Arias-de-Reyna, S., Dieulefait, L., Wiese, G.: Compatible systems of symplectic Galois representations and the inverse Galois problem I. Images of projective representations (Preprint, 2013). arXiv:1203.6546
Arias-de-Reyna, S., Dieulefait, L., Wiese, G.: Compatible systems of symplectic Galois representations and the inverse Galois problem II. Transvections and huge image (Preprint, 2013). arXiv:1203.6552
Arthur, J.: The endoscopic classification of representations. In: Orthogonal and Symplectic Groups. American Mathematical Society Colloquium Publications, vol. 61. American Mathematical Society, Providence (2013)
Bellaïche, J., Chenevier, G.: The sign of Galois representations attached to automorphic forms for unitary groups. Compos. Math. 147(5), 1337–1352 (2011)
Article
MATH
MathSciNet
Google Scholar
Borel, A., Jacquet, H.: Automorphic forms and automorphic representations, automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1. In: Proceedings of Symposia in Pure Mathematics, vol. XXXIII, pp. 189–207. American Mathematical Society, Providence (1979)
Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. (2) 179(2), 501–609 (2014)
Carayol, H.: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991). Contemporary Mathematics, vol. 165, pp. 213–237. American Mathematical Society, Providence (1994)
Caraiani, A.: Monodromy and local-global compatibility for \(l=p\) (Preprint, 2012). arXiv:1202.4683
Chenevier, G., Clozel, L.: Corps de nombres peu ramifiés et formes automorphes autoduales. J. Am. Math. Soc. 22(2), 467–519 (2009)
Article
MATH
MathSciNet
Google Scholar
Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and \(L\)-functions, vol. I (Ann Arbor, MI, 1988). Perspectives in Mathematics, vol. 10, pp. 77–159. Academic Press, Boston (1990)
Dieulefait, L., Wiese, G.: On modular forms and the inverse Galois problem. Trans. Am. Math. Soc. 363(9), 4569–4584 (2011)
Article
MATH
MathSciNet
Google Scholar
Jiang, D., Soudry, D.: The local converse theorem for \({\rm SO}(2n+1)\) and applications, Ann. Math. (2) 157(3), 743–806 (2003)
Jiang, D., Soudry, D.: Generic representations and local Langlands reciprocity law for \(p\)-adic \(\text{ SO }_{2n+1}\). In: Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 457–519. Johns Hopkins University Press, Baltimore (2004)
Khare, C., Larsen, M., Savin, G.: Functoriality and the inverse Galois problem. Compos. Math. 144(3), 541–564 (2008)
Article
MATH
MathSciNet
Google Scholar
Muić, G.: Spectral decomposition of compactly supported Poincaré series and existence of cusp forms. Compos. Math. 146(1), 1–20 (2010)
Article
MATH
MathSciNet
Google Scholar
Sauvageot, F.: Principe de densité pour les groupes réductifs. Compositio Math. 108(2), 151–184 (1997)
Article
MATH
MathSciNet
Google Scholar
Shin, S.W.: Automorphic Plancherel density theorem. Israel J. Math. 192(1), 83–120 (2012)
Article
MATH
MathSciNet
Google Scholar
Shin, S.W., Templier, N.: Fields of rationality for automorphic representations. Compositio Math. (to appear, 2014). arXiv:1302.6144
Tadić, M.: Geometry of dual spaces of reductive groups (non-Archimedean case). J. Anal. Math. 51, 139–181 (1988)
Article
MATH
Google Scholar
Waldspurger, J.-L.: La formule de Plancherel pour les groupes \(p\)-adiques d’après Harish-Chandra. J. Inst. Math. Jussieu 2(2), 235–333 (2003)
Article
MATH
MathSciNet
Google Scholar