\(W^*\)-Superrigidity for arbitrary actions of central quotients of braid groups

Abstract

For any \(n\geqslant 4\) let \(\tilde{B}_n=B_n/Z(B_n)\) be the quotient of the braid group \(B_n\) through its center. We prove that any free ergodic probability measure preserving (pmp) action \(\tilde{B}_n\curvearrowright (X,\mu )\) is virtually \(\hbox {W}^*\)-superrigid in the following sense: if \(L^{\infty }(X)\rtimes \tilde{B}_n\cong L^{\infty }(Y)\rtimes \Lambda \), for an arbitrary free ergodic pmp action \(\Lambda \curvearrowright (Y,\nu )\), then the actions \(\tilde{B}_n\curvearrowright X,\Lambda \curvearrowright Y\) are virtually conjugate. Moreover, we prove that the same holds if \(\tilde{B}_n\) is replaced with a finite index subgroup of the direct product \(\tilde{B}_{n_1}\times \cdots \times \tilde{B}_{n_k}\), for some \(n_1,\ldots ,n_k\geqslant 4\). The proof uses the dichotomy theorem for normalizers inside crossed products by free groups from Popa and Vaes (212, 141–198, 2014) in combination with the OE superrigidity theorem for actions of mapping class groups from Kida (131, 99–109, 2008). Similar techniques allow us to prove that if a group \(\Gamma \) is hyperbolic relative to a finite family of proper, finitely generated, residually finite, infinite subgroups, then the \(\hbox {II}_1\) factor \(L^{\infty }(X)\rtimes \Gamma \) has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic pmp action \(\Gamma \curvearrowright (X,\mu )\).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Birman, J.S., Hilden, H.M.: On isotopies of homeomorphisms of Riemann surfaces. Ann. Math. 97(2), 424–439 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Boutonnet, R.: \(\text{ W }^*\)-Superrigidity of mixing Gaussian actions of rigid groups. Adv. Math. 244, 69–90 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Bowditch, B.H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22, 1250016 (2012) p. 66

  4. 4.

    Bozejko, M., Picardello, M.A.: Weakly amenable groups and amalgamated products. Proc. Am. Math. Soc. 117, 1039–1046 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Connes, A.: Classification of injective factors. Ann. Math. 104(2), 73–115 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    Chifan, I., Peterson, J.: Some unique group measure space decomposition results. Duke Math. J. 162(11), 1923–1966 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Chifan, I., Sinclair, T.: On the structural theory of \(\text{ II }_1\) factors of negatively curved groups. Ann. Sci. École Norm. Sup. 46, 1–33 (2013)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Chifan, I., Sinclair, T., Udrea, B.: On the structural theory of \(\text{ II }_1\) factors of negatively curved groups, II. Actions by product groups. Adv. Math. 245, 208–236 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Dahmani, F., Guirardel, V., Osin, D.V.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. arXiv:1111.7048 (preprint)

  10. 10.

    Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8, 810–840 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, Princeton (2011)

    MATH  Google Scholar 

  12. 12.

    Groves, D.: Limit groups for relatively hyperbolic groups, II: Makanin–Razborov diagrams. Geom. Topol. 9, 2319–2358 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Hain, R. Looijenga E.: Mapping class groups and moduli spaces of curves. In: Algebraic Geometry-Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, 62, Part 2, , pp. 97–142 .American Mathematical Society, Providence (1997)

  14. 14.

    Houdayer, C., Popa, S., Vaes, S.: A class of groups for which every action is \(\text{ W }^*\)-superrigid. Groups Geom. Dyn. 7, 577–590 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Ioana, A.: Cocycle superrigidity for profinite actions of property (T) groups. Duke Math. J. 157, 337–367 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Ioana, A.: \(\text{ W }^*\)-Superrigidity for Bernoulli actions of property (T) groups. J. Am. Math. Soc. 24, 1175–1226 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Ioana, A.: Uniqueness of the group measure space decomposition for Popa’s \(\cal {HT}\) factors. Geom. Funct. Anal. 22, 699–732 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Ioana, A.: Cartan subalgebras of amalgamated free product \(\text{ II }_1\) factors. To appear in Ann. Sci. École Norm. Sup. (preprint). arXiv:1207.0054 (2014)

  19. 19.

    Ioana, A.: Classiffication and rigidity for von Neumann algebras. In: To Appear in Proceedings of the 6th ECM (Krakow, 2012), European Mathematical Society Publishing House (preprint). arXiv:1212.0453 (2012)

  20. 20.

    Ioana, A., Popa, S., Vaes, S.: A class of superrigid group von Neumann algebras. Ann. Math. 178, 231–286 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Ivanov, N.V.: Mapping Class Groups, Handbook of Geometric Topology, pp. 523–633. North-Holland, Amsterdam (2002)

    Google Scholar 

  22. 22.

    Ivanov, N.V.: Fifteen problems about the mapping class groups. In: Problems on Mapping Class Groups and Related Topics, Proceedings of Symposia in Pure Mathematics, 74, pp. 71–80. American Mathematical Society, Providence (2006)

  23. 23.

    Jones, V., Popa, S.: Some properties of MASAs in factors. In: Invariant Subspaces and Other Topics (Timişoara/Herculane, 1981), Operator Theory: Advances and Applications, 6, pp. 89–102. Birkhäuser (1982)

  24. 24.

    Kharlampovich, O., Myasnikov, A.: Description of fully residually free groups and irreducible affine varieties over a free group. In: Summer School in Group Theory in Banff, 1996, CRM Proceedings of Lecture Notes, 17, pp. 71–80. American Mathematical Society, Providence (1999)

  25. 25.

    Kida, Y.: Orbit equivalence rigidity for ergodic actions of the mapping class group. Geom. Dedicata 131, 99–109 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Kida, Y.: Rigidity of amalgamated free products in measure equivalence. J. Topol. 4, 687–735 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    McCarthy, J.D.: On the first cohomology group of cofinite subgroups in surface mapping class groups. Topology 40, 401–418 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. 28.

    Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  Google Scholar 

  29. 29.

    Osin, D.V.: Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Memoirs Am. Math. Soc. 179(843) vi+100 (2006)

  30. 30.

    Osin, D.V.: Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167(2), 295–326 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Osin, D.V.: Elementary subgroups of relatively hyperbolic groups and bounded generation. Int J. Algebra Comput. 16(1), 99–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    Ozawa, N., Popa, S.: On a class of \(\text{ II }_1\) factors with at most one Cartan subalgebra. Ann. Math. 172, 713–749 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. 33.

    Peterson, J.: Examples of group actions which are virtually \(\text{ W }^*\)-superrigid (preprint). arXiv:1002.1745

  34. 34.

    Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. 19, 57–106 (1986)

    MATH  MathSciNet  Google Scholar 

  35. 35.

    Popa, S.: On a class of type \(\text{ II }_1\) factors with Betti numbers invariants. Ann. Math. 163, 809–899 (2006)

    Article  MATH  Google Scholar 

  36. 36.

    Popa, S.: Strong rigidity of \(\text{ II }_1\) factors arising from malleable actions of \(w\)-rigid groups I. Invent. Math. 165, 369–408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37.

    Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: Proceedings of the ICM (Madrid, 2006), vol. I, , pp. 445–477. European Mathematical Society Publishing House (2007)

  38. 38.

    Popa, S., Vaes, S.: Group measure space decomposition of \(\text{ II }_1\) factors and \(\text{ W }^*\)-superrigidity. Invent. Math. 182(2), 371–417 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    Popa, S., Vaes, S.: Unique Cartan decomposition for \(\text{ II }_1\) factors arising from arbitrary actions of free groups. Acta Math. 212, 141–198 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. 40.

    Popa, S., Vaes, S.: Unique Cartan decomposition for \(\text{ II }_1\) factors arising from arbitrary actions of hyperbolic groups. J. Reine Angew. Math.

  41. 41.

    Powell, J.: Two theorems on the mapping class group of a surface. Proc. Am. Math. Soc. 68, 347–350 (1978)

    Article  MATH  Google Scholar 

  42. 42.

    Putman, A.: A note on the abelianizations of finite-index subgroups of the mapping class group. Proc. Am. Math. Soc. 138, 753–758 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    Sela, Z.: Diophantine geometry over groups I: Makanin–Razborov diagrams. IHES Publ. Math. 93, 31–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. 44.

    Vaes, S.: Explicit computations of all finite index bimodules for a family of \(\text{ II }_1\) factors. Ann. Sci. École Norm. Sup. 41, 743–788 (2008)

    MATH  MathSciNet  Google Scholar 

  45. 45.

    Vaes, S.: Rigidity for von Neumann algebras and their invariants. In: Proceedings of the ICM (Hyderabad, India, 2010), vol. III, pp.1624–1650. Hindustan Book Agency (2010)

  46. 46.

    Vaes, S.: One-cohomology and the uniqueness of the group measure space decomposition of a \(\text{ II }_1\) factor. Math. Ann. 355, 661–696 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. 47.

    Vaes, S.: Normalizers inside amalgamated free product von Neumann algebras (preprint). arXiv:1305.3225 (2013)

Download references

Acknowledgments

We would like to thank Rémi Boutonnet and Cyril Houdayer for useful comments. The first author is especially grateful to Denis Osin for kindly pointing out to him that the main results of this paper also apply to the families of groups described in the Sect. 5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian Ioana.

Additional information

I. C. was supported in part by NSF Grant #1301370.

A. I. was supported in part by NSF Grant DMS #1161047 and NSF Career Grant DMS #1253402.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chifan, I., Ioana, A. & Kida, Y. \(W^*\)-Superrigidity for arbitrary actions of central quotients of braid groups. Math. Ann. 361, 563–582 (2015). https://doi.org/10.1007/s00208-014-1077-8

Download citation