Skip to main content
Log in

Remark on the Helmholtz decomposition in domains with noncompact boundary

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\varOmega \) be a domain in \(\mathbb {R}^{d+1}\) whose boundary is given as a uniform Lipschitz graph \(x_{d+1}=\eta (x)\) for \(x \in \mathbb {R}^d\). For such a domain, it is known that the Helmholtz decomposition is not always valid in \(L^p(\varOmega )\) except for the energy space \(L^2 (\varOmega )\). In this paper we show that the Helmholtz decomposition still holds in certain anisotropic spaces which include vector fields decaying slowly in the \(x_{d+1}\) variable. In particular, these classes include some infinite energy vector fields. For the purpose, we develop a new approach based on a factorization of divergence form elliptic operators whose coefficients are independent of one variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Terasawa, Y.: On Stokes operators with variable viscosity in bounded and unbounded domains. Math. Ann. 344, 381–429 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alfonseca, M.A., Auscher, P., Axelsson, A., Hofmann, S., Kim, S.: Analyticity of layer potentials and \(L^2\) solvability of boundary value problems for divergence form elliptic equations with complex \(L^\infty \) coefficients. Adv. Math. 226, 4533–4606 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auscher, P., Axelsson, A., Hofmann, S.: Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems. J. Funct. Anal. 255, 374–448 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auscher, P., Axelsson, A., McIntosh, A.: Solvability of elliptic systems with square integrable boundary data. Ark. Mat. 48, 253–287 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benedek, A., Calderón, A.-P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962)

    Article  MATH  Google Scholar 

  6. Bogovskii, M.E.: Decomposition of \(L^p(\Omega ,{\mathbb{R}}^n)\) into the direct sum of subspaces of solenoidal and potential vector fields. Dokl. Akad. Nauk SSSR 286, 781–786 (Russian). English translation in Soviet Math. Dokl. 33(1986), 161–165 (1986)

  7. Dahlberg, B.: Poisson semigroup and singular integrals. Proc. Am. Math. Soc. 97(1), 41–48 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farwig, R.: The weak Neumann problem and the Helmholtz decomposition in general aperture domains. Progress in partial differential equations: the Metz surveys 2. In: Chipot, M. (ed.) Pitman Research Notes in Mathematics Series, Longman Scientific Technical, vol. 296, pp. 86–96 (1993)

  10. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88, 239–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in \(L^q\) spaces. Analysis 16, 1–26 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fujiwara, D., Morimoto, H.: An \(L_r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259, 2147–2164 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Geissert, M., Heck, H., Hieber, M., Sawada, O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems. In: Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

  17. Haase, M.: The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications 169. Birkhäuser Verlag, Basel (2006)

    Book  Google Scholar 

  18. Jerison, D., Kenig, C.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4, 203–207 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jerison, D., Kenig, C.: The Dirichlet problem in nonsmooth domains. Ann. Math. (2) 113, 367–382 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  21. Kenig, C., Koch, H., Pipher, J., Toro, T.: A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153, 231–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maekawa, Y., Miura, H.: On domain of Poisson operators and factorization for divergence form elliptic operators, preprint. arXiv:1307.6517 [math.AP]

  23. Maekawa, Y., Miura, H.: On Poisson operators and Dirichlet–Neumann maps in \(H^s\) for divergence form elliptic operators with Lipschitz coefficients, preprint. arxiv: arXiv:1307.8151 [math.AP]

  24. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MATH  MathSciNet  Google Scholar 

  25. Miyakawa, T.: The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17, 115–149 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Payne, L.E., Weinberger, H.F.: New bounds in harmonic and biharmonic problems. J. Math. Phys. 33, 291–307 (1955)

    MATH  MathSciNet  Google Scholar 

  27. Rellich, F.: Darstellung der Eigenwerte von \(\Delta u+\lambda u=0\) durch ein Randintegral. Math. Z. 46, 635–636 (1940)

    Article  MathSciNet  Google Scholar 

  28. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes Equations, pp. 1–35. Ser. Adv. Math. Appl. Sci., 11. World Sci. Publishing, River Edge (1992)

  29. Sohr, H., Thäter, G.: Imaginary powers of second order differential operators and \(L^q\)-Helmholtz decomposition in the infinite cylinder. Math. Ann. 311, 577–602 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Miura.

Appendix

Appendix

1.1 Semigroup \(\{e^{-t\varLambda }\}_{t\ge 0}\) in \(L^r(\mathbb {R}^d)\) for \(r\in (1,\infty )\)

Proposition 3

Let \(r\in (1,\infty )\). Then the restrictions of \(\{e^{-t\varLambda }\}_{t\ge 0}\) on \(L^2(\mathbb {R}^d)\cap L^r(\mathbb {R}^d)\) is extended as a strongly continuous and bounded semigroup in \(L^r (\mathbb {R}^d)\).

Proof

Here we give only a sketch of the proof. We first consider the case \(r\in [2,\infty )\). Set \(u(t) = e^{-t\varLambda } f, f\in H^1 (\mathbb {R}^d) \cap L^r (\mathbb {R}^d)\), and set \(v(s;t) = e^{-s\mathcal {P}} u(t), s\ge 0\). Then we have

$$\begin{aligned} \frac{\,\mathrm{d}}{\,\mathrm{d}t} \Vert u(t) \Vert _{L^r(\mathbb {R}^d)}^r&= - r \langle \varLambda u(t), |u(t)|^{r-2} u(t) \rangle _{L^2(\mathbb {R}^d)} \\&= - r \int _0^\infty \langle A\nabla v(s;t), \nabla \big ( | v(s;t)|^{r-2} v(s;t) \big ) \rangle _{L^2 (\mathbb {R}^d)} \,\mathrm{d}s \\&\le -c r \Vert \nabla ( |v(\cdot ; t) |^{\frac{r}{2}} ) \Vert _{L^2 (\mathbb {R}^{d+1}_+)}^2\le -c r \Vert | u(t) |^{\frac{r}{2}} \Vert _{\dot{H}^\frac{1}{2}(\mathbb {R}^d)}^2. \end{aligned}$$

In particular, we have \(\Vert e^{-t\varLambda } f \Vert _{L^r(\mathbb {R}^d)}\le \Vert f \Vert _{L^r(\mathbb {R}^d)}\) when \(r\in [2,\infty )\), and thus, when \(r\in [2,\infty ]\) (by taking the limit \(r\rightarrow \infty \)). By the dual relation \(\langle e^{-t\varLambda } f, g\rangle _{L^2 (\mathbb {R}^d)} = \langle f, e^{-t\varLambda }g \rangle _{L^2 (\mathbb {R}^d)}\) we have this uniform bound also for \(r\in [1,2]\). Hence, by the density argument \(\{e^{-t\varLambda }\}_{t\ge 0}\) is extended as a bounded semigroup acting on \(L^r(\mathbb {R}^d)\) for all \(r\in [1,\infty ]\) (note that this uniform bound holds also for \(r=1,\infty \)). As for the strong continuity, let \(r\in (2,\infty )\), and for any \(f\in L^r(\mathbb {R}^d)\) we take \(\{f_n\}\subset C_0^\infty (\mathbb {R}^d)\) such that \(f_n\rightarrow f\) as \(n\rightarrow \infty \) in \(L^r(\mathbb {R}^d)\). Then we see

$$\begin{aligned}&\Vert e^{-t\varLambda } f - f\Vert _{L^r (\mathbb {R}^d)}\\&\quad \le \Vert e^{-t\varLambda } (f-f_n)\Vert _{L^r(\mathbb {R}^d)} + \Vert f-f_n \Vert _{L^r(\mathbb {R}^d)} + \Vert e^{-t\varLambda } f_n-f_n\Vert _{L^r(\mathbb {R}^d)}\\&\quad \le 2 \Vert f -f_n \Vert _{L^r(\mathbb {R}^d)} + \Vert e^{-t\varLambda } f_n-f_n\Vert _{L^2(\mathbb {R}^d)}^{\frac{2}{r}} \Vert e^{-t\varLambda } f_n-f_n\Vert _{L^\infty (\mathbb {R}^d)}^{1-\frac{2}{r}}\\&\quad \le 2 \Vert f -f_n \Vert _{L^r(\mathbb {R}^d)} + 2^{1-\frac{2}{r}} \Vert e^{-t\varLambda } f_n-f_n\Vert _{L^2(\mathbb {R}^d)}^{\frac{2}{r}} \Vert f_n \Vert _{L^\infty (\mathbb {R}^d)}^{1-\frac{2}{r}}. \end{aligned}$$

Since we have already known that \(\{e^{-t\varLambda }\}_{t\ge 0}\) is strongly continuous in \(L^2 (\mathbb {R}^d)\), the last estimate implies the strong continuity in \(L^r(\mathbb {R}^d)\) for \(r\in (2,\infty )\). The case \(r\in (1,2)\) is proved in the same manner. The proof is complete. \(\square \)

1.2 Semigroup \(\{e^{-t\mathcal {P}}\}_{t\ge 0}\) in \(L^r(\mathbb {R}^d)\) for \(r\in [2,\infty )\)

Proposition 4

Let \(r\in [2,\infty )\). Then the restriction of \(\{e^{-t\mathcal {P} }\}_{t\ge 0}\) on \(L^2(\mathbb {R}^d)\cap L^r(\mathbb {R}^d)\) is extended as a strongly continuous and bounded semigroup in \(L^r (\mathbb {R}^d)\).

Proof

Again we give only a sketch of the proof. Let \(f\in L^2 (\mathbb {R}^d)\cap L^\infty (\mathbb {R}^d)\) and set \(u(t) = e^{-t\mathcal {P}} f\). Then, since \(u\) satisfies \(\mathcal {A}u=0\) in \(\mathbb {R}^{d+1}_+\), the maximum principle implies that

$$\begin{aligned} \Vert u(t) \Vert _{L^\infty (\mathbb {R}^d)} \le \Vert u \Vert _{L^\infty (\mathbb {R}^{d+1}_+)} \le \Vert f \Vert _{L^\infty (\mathbb {R}^d)}. \end{aligned}$$

This estimate gives the boundedness of \(e^{-t\mathcal {P}}\) in \(L^\infty (\mathbb {R}^d)\). Since \(e^{-t\mathcal {P}}\) is bounded in \(L^2 (\mathbb {R}^d)\), the interpolation inequality yields the boundedness of \(e^{-t\mathcal {P}}\) in \(L^r(\mathbb {R}^d)\) for each \(r\in (2,\infty )\). The strong continuity in \(L^r(\mathbb {R}^d)\) is shown as in the proof of Proposition 3. The proof is complete.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maekawa, Y., Miura, H. Remark on the Helmholtz decomposition in domains with noncompact boundary. Math. Ann. 359, 1077–1095 (2014). https://doi.org/10.1007/s00208-014-1033-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1033-7

Navigation