Mathematische Annalen

, Volume 358, Issue 1–2, pp 351–359

Contact structures on \(M \times S^2\)

  • Jonathan Bowden
  • Diarmuid Crowley
  • András I. Stipsicz

DOI: 10.1007/s00208-013-0963-9

Cite this article as:
Bowden, J., Crowley, D. & Stipsicz, A.I. Math. Ann. (2014) 358: 351. doi:10.1007/s00208-013-0963-9


We show that if a manifold \(M\) admits a contact structure, then so does \(M \times S^2\). Our proof relies on surgery theory, a theorem of Eliashberg on contact surgery and a theorem of Bourgeois showing that if \(M\) admits a contact structure then so does \(M \times T^2\).

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan Bowden
    • 1
  • Diarmuid Crowley
    • 2
  • András I. Stipsicz
    • 3
  1. 1.Mathematisches InstitutUniversität AugsburgAugsburgGermany
  2. 2.Max Planck Institut für MathematikBonnGermany
  3. 3.Rényi Institute of MathematicsBudapestHungary

Personalised recommendations