Mathematische Annalen

, Volume 358, Issue 1–2, pp 351–359 | Cite as

Contact structures on \(M \times S^2\)

  • Jonathan Bowden
  • Diarmuid Crowley
  • András I. Stipsicz


We show that if a manifold \(M\) admits a contact structure, then so does \(M \times S^2\). Our proof relies on surgery theory, a theorem of Eliashberg on contact surgery and a theorem of Bourgeois showing that if \(M\) admits a contact structure then so does \(M \times T^2\).


Manifold Boundary Component Contact Structure Contact Manifold Solid Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Max Planck Institute for Mathematics in Bonn for its hospitality while parts of this work has been carried out, and Hansjörg Geiges for useful comments on an earlier draft of the paper. AS was partially supported by OTKA NK81203, by the Lendület program of the Hungarian Academy of Sciences and by ERC LDTBud. The present work is part of the authors’ activities within CAST, a Research Network Program of the European Science Foundation.


  1. 1.
    Bourgeois, F.: Odd dimensional tori are contact manifolds. Int. Math. Res. Notice 1571–1574 (2002)Google Scholar
  2. 2.
    Bowden, J., Crowley, D., Stipsicz, A.: The topology of Stein fillable manifolds in high dimensions I. (arXiv:1306.2746)Google Scholar
  3. 3.
    Casals, R., Pancholi, D., Presas, F.: Almost contact 5-manifolds are contact (arXiv:1203.2166)Google Scholar
  4. 4.
    Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifold. American Mathematical Society Colloquium Publications, vol 59. American Mathematical Society, Providence (2012)Google Scholar
  5. 5.
    Eliashberg, Y.: Topological characterization of Stein manifolds of dimension \({\>}2\). Int. J. Math. 1, 29–46 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Etnyre, J.: Contact structures on 5-manifolds (arXiv:1210.5208)Google Scholar
  7. 7.
    Geiges, H.: Contact topology in dimension greater than three. In: European Congress of Mathematics, vol. II (Barcelona, 2000), pp. 535–545 (Progr. Math. Birkhäuser, Basel 202, 2001)Google Scholar
  8. 8.
    Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 405–414. Higher edn. Press, Beijing (2002)Google Scholar
  9. 9.
    Hajduk, B., Walczak, R.: Constructions of contact forms on products and piecewise fibred manifolds (arXiv:1204.1692)Google Scholar
  10. 10.
    Kreck, M.: Surgery and duality. Ann. Math. 149, 707–754 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lück, W.: A basic introduction to surgery theory. In: ICTP Lecture Notes Series 9, Band 1. School on high-dimensional manifold theory Trieste 2001. ICTP, Trieste (2002).
  12. 12.
    Lutz, R.: Sur la géométrie des structures contact invariantes. Ann. Inst. Fourier 29, 283–306 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Martinet, J.: Formes de contact sur les variétés de dimension 3. In: Proceedings of Liverpool Singularities Symposium II, Lecture Notes in Mathematics vol 209, pp. 142–163. Springer, Berlin (1971)Google Scholar
  14. 14.
    Wall, C.T.C.: Geometrical connectivity I. J. Lond. Math. Soc. 3, 597–604 (1971)CrossRefzbMATHGoogle Scholar
  15. 15.
    Weinstein, A.: Contact surgery and symplectic handlebodies. Hokkaido Math. J. 20, 241–251 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan Bowden
    • 1
  • Diarmuid Crowley
    • 2
  • András I. Stipsicz
    • 3
  1. 1.Mathematisches InstitutUniversität AugsburgAugsburgGermany
  2. 2.Max Planck Institut für MathematikBonnGermany
  3. 3.Rényi Institute of MathematicsBudapestHungary

Personalised recommendations