Mathematische Annalen

, Volume 357, Issue 1, pp 355–400 | Cite as

The \(K\)-theory of free quantum groups

Article

Abstract

In this paper we study the \(K\)-theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are \(K\)-amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the \(K\)-theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a \(\gamma \)-element and that \(\gamma = 1\). As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting.

Mathematics Subject Classification (2000)

20G42 46L80 19K35 

References

  1. 1.
    Baaj, S., Skandalis, G.: \(C^\ast \)-algèbres de Hopf et théorie de Kasparov équivariante. K Theory 2(6), 683–721 (1989)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de \(C^*\)-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4), 425–488 (1993)MathSciNetGoogle Scholar
  3. 3.
    Baaj, S., Vaes, S.: Double crossed products of locally compact quantum groups. J. Inst. Math. Jussieu 4(1), 135–173 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Banica, T.: Théorie des représentations du groupe quantique compact libre O(n). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    Banica, T.: Le groupe quantique compact libre U(n). Comm. Math. Phys. 190(1), 143–172 (1997)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Baum, P., Connes, A.: Geometric K-theory for Lie groups and foliations. Enseign. Math. 46(1–2), 3–42 (2000)Google Scholar
  7. 7.
    Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and \(K\)-theory of group \(C^\ast \)-algebras. In: \(C^\ast \)-algebras: 1943–1993 (San Antonio, TX, 1993), vol. 167. Contemporary Mathematics, pp. 240–291. American Mathematical Society, Providence (1994) Google Scholar
  8. 8.
    Bichon, J., De Rijdt, A., Vaes, S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Comm. Math. Phys. 262(3), 703–728 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Blackadar, B.: \(K\)-theory for operator algebras, 2nd edn. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998)Google Scholar
  10. 10.
    Cuntz, J.: The \(K\)-groups for free products of \(C^{\ast } \)-algebras. In: Proceedings of Symposia in Pure Mathematics on Operator algebras and applications, Part I (Kingston, Ont., 1980), vol. 38, pp. 81–84. American Mathematical Society, Providence (1982)Google Scholar
  11. 11.
    Cuntz, J.: K-theoretic amenability for discrete groups. J. Reine Angew. Math. 344, 180–195 (1983)MathSciNetMATHGoogle Scholar
  12. 12.
    Higson, N., Kasparov, G.: E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144(1), 23–74 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Julg, P., Valette, A.: \(K\)-theoretic amenability for SL\(_{2}({Q}_{p})\), and the action on the associated tree. J. Funct. Anal. 58(2), 194–215 (1984)Google Scholar
  14. 14.
    Kasparov, G.G., Skandalis, G.: Groups acting on buildings, operator \(K\)-theory, and Novikov’s conjecture. K Theory 4(4), 303–337 (1991)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kustermans, J., Vainerman, L., Van Daele, A., Woronowicz, S.L.: Locally compact quantum groups. In: Lecture Notes. Conference on Noncommutative Geometry and Quantum groups, Warsaw (2001)Google Scholar
  16. 16.
    Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(6), 837–934 (2000)MathSciNetMATHGoogle Scholar
  18. 18.
    Meyer, R.: Homological algebra in bivariant \(K\)-theory and other triangulated categories. II. Tbil. Math. J. 1, 165–210 (2008)MathSciNetMATHGoogle Scholar
  19. 19.
    Meyer, R., Nest, R.: The Baum–Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Meyer, R., Nest, R.: Homological algebra in bivariant \(K\)-theory and other triangulated categories. I. In: Triangulated categories. London Mathematical Society Lecture Note Series, vol. 375, pp. 236–289. Cambridge Univ. Press, Cambridge (2010)Google Scholar
  21. 21.
    Nest, R., Voigt, C.: Equivariant Poincaré duality for quantum group actions. J. Funct. Anal. 258(5), 1466–1503 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Oyono-Oyono, H.: Baum–Connes conjecture and group actions on trees. K Theory 24(2), 115–134 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Pimsner, M., Voiculescu, D.: Exact sequences for \(K\)-groups and Ext-groups of certain cross-product \(C^{\ast } \)-algebras. J. Oper. Theory 4(1), 93–118 (1980)MathSciNetMATHGoogle Scholar
  24. 24.
    Pimsner, M., Voiculescu, D.: \(K\)-groups of reduced crossed products by free groups. J. Oper. Theory 8(1), 131–156 (1982)MathSciNetMATHGoogle Scholar
  25. 25.
    Tu, J.-L.: The Baum–Connes conjecture and discrete group actions on trees. K Theory 17(4), 303–318 (1999)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Vaes, S.: A new approach to induction and imprimitivity results. J. Funct. Anal. 229(2), 317–374 (2005)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Vaes, S., Vainerman, L.: On low-dimensional locally compact quantum groups. In: Locally Compact Quantum Groups and Groupoids (Strasbourg, 2002). IRMA Lectures in Mathematics and Theoretical Physics, vol. 2, pp. 127–187. De Gruyter, Berlin (2003)Google Scholar
  28. 28.
    Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)MATHCrossRefGoogle Scholar
  30. 30.
    Vergnioux, R.: \(K\)-amenability for amalgamated free products of amenable discrete quantum groups. J. Funct. Anal. 212(1), 206–221 (2004)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Vergnioux, R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Voiculescu, D.: Symmetries of some reduced free product \(C^\ast \)-algebras. In: Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983). Lecture Notes in Mathematics, vol. 1132, pp. 556–588. Springer, Berlin (1985)Google Scholar
  33. 33.
    Voigt, C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Wang, S.: Free products of compact quantum groups. Comm. Math. Phys. 167(3), 671–692 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Wang, S.: Structure and isomorphism classification of compact quantum groups \(A_u(Q)\) and \(B_u(Q)\). J. Oper. Theory 48(3), 573–583 (2002)MATHGoogle Scholar
  36. 36.
    Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen Basse-NormandieCaen CedexFrance
  2. 2.Mathematisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations