Mathematische Annalen

, Volume 357, Issue 1, pp 51–88 | Cite as

Classicality for small slope overconvergent automorphic forms on some compact PEL Shimura varieties of type C



We study the rigid cohomology of the ordinary locus in some compact PEL Shimura varieties of type C with values in automorphic local systems and use it to prove a small slope criterion for classicality of overconvergent Hecke eigenforms. This generalises work of Coleman, and is a first step in an ongoing project to extend the cohomological approach to classicality to higher-dimensional Shimura varieties.

Mathematics Subject Classification (2000)

11F33 11G18 14F30 



The author would like to thank his PhD supervisor Kevin Buzzard for suggesting this problem and for his constant help and encouragement during every aspect of this project. He would also like to thank his second supervisor Toby Gee for valuable advice during the write-up, as well as Wansu Kim, Christopher Lazda, James Newton, Shu Sasaki and Teruyoshi Yoshida for many helpful discussions relating to this work, and Francesco Baldassarri and Bernard Le Stum for answering questions about rigid and overconvergent de Rham cohomology. The author wishes to thank the Engineering and Physical Sciences Research Council for supporting him throughout his doctoral studies. It is also a pleasure to thank the Fields Institute, where part of the write-up of this paper was done, for their support and hospitality as well as for the excellent working conditions provided. Finally the author wishes to thank the anonymous referee for correcting some typos and for insightful comments. In the first version of this paper, \(p\) was assumed to be inert in \(F\). The author wishes to sincerely thank the referee for pointing out that the methods should extend to the case of \(p\) unramified, and for urging the author to investigate the general case.


  1. 1.
    Andre, Y., Baldassarri, F.: De Rham Cohomology of Differential Modules on Algebraic Varietie. Prepublication Institut de Mathematiques de Jussieu 184Google Scholar
  2. 2.
    Andreatta, F., Gasbarri, C.: The canonical subgroup for families of abelian varieties. Compos Math. 143(3), 566–602 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Andreatta, F., Goren, E.Z.: Geometry of Hilbert modular varieties over totally ramified primes. Int. Math. Res. Not. 33, 1785–1835 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andreatta, F., Iovita, A., Pilloni, V.: p-adic families of Siegel modular forms. Preprint (2012)
  5. 5.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules. In: Lie groups and their representations. Summer School of the Bolyai Janos Mathematical Society, (Budapest, 1971), Adam Hilger Ltd., London (1975)Google Scholar
  6. 6.
    Borel, A., Wallach, N.: Continuous cohomology. In: Discrete Subgroups and Representation Theory of Reductive Groups, 2nd edn. American Mathematical Society, Providence (1999)Google Scholar
  7. 7.
    Boutot, J.F.: Varietes de Shimura: Le probleme de modules en inegale caracteristique. In: Varietes de Shimura et fonctions L. Publ. Math. Univ. Paris VII 6 (1979)Google Scholar
  8. 8.
    Buzzard, K.M.: Eigenvarieties. In: L-functions and Galois Representations, pp. 59–120. London Mathematical Society. Lecture Note Series, vol 320. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Buzzard, K.M., Taylor, R.L.: Companion forms and weight 1 forms. Ann. Math. 149, 905–919 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chai, C.L., Faltings, G.: Degenerations of Abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 22. Springer, Berlin (1990)Google Scholar
  11. 11.
    Chenevier, G.: Familles p-adiques de formes automorphes pour GL(n). Journal fur die reine und angewandte Mathematik 570, 143–217 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Coleman, R.F.: Classical and overconvergent modular forms. Inventiones Math. 124, 215–241 (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Deligne, P., Pappas, G.: Singularites des espaces de modules de Hilbert, en les caracteristiques divisant le discriminant. Compos. Math. 90, 59–79 (1994)MathSciNetMATHGoogle Scholar
  14. 14.
    Emerton, M.: On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Inventiones Math. 164(1), 1–84 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Faltings, G.: On the cohomology of locally symmetric Hermitian spaces. In: Lecture Notes in Mathematics, vol. 1029, pp. 55–98 (1983)Google Scholar
  16. 16.
    Goren, E.Z., Kassaei, P.L.: Canonical subgroups over Hilbert modular varieties. Journal fur die reine und angewandte Mathematik (to appear, 2012).
  17. 17.
    Goren, E.Z., Oort, F.: Stratifications of Hilbert modular varieties. J. Algebraic Geom 9, 111–154 (2000)MathSciNetMATHGoogle Scholar
  18. 18.
    Gouvea, F.Q.: Continuity properties of Modular forms. In: Elliptic Curves and Related Topics. CRM Proceedings and Lecture Notes, AMS, vol. 4, pp. 85–99 (1994)Google Scholar
  19. 19.
    Harris, M., Taylor, R.L.: The geometry and cohomology of some simple shimura varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001)Google Scholar
  20. 20.
    Hida, H.: Control Theorems of coherent sheaves on Shimura varieties of PEL type. J. Inst. Math. Jussieu 1, 1–76 (2002)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \({\cal O}\). In: Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)Google Scholar
  22. 22.
    Kassaei, P.L.: p-adic modular forms over Shimura curves over \(\mathbb{Q}\). PhD Thesis. Massachusetts Institute of Technology (1999).
  23. 23.
    Kassaei, P.L.: A gluing lemma and overconvergent modular forms. Duke Math. J. 132(3), 509–529 (2006)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kedlaya, K.S.: Finiteness in rigid cohomology. Duke Math. J. 134, 15–97 (2006)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Kedlaya, K.S.: Fourier transforms and “ p-adic Weil II”. Compos. Math. 142, 1426–1450 (2006)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kisin, M.: Overconvergent modular forms and the Fontaine-Mazur conjecture. Inventiones Math. 153(2), 373–454 (2003)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kisin, M., Lai, K.F.: Overconvergent Hilbert modular forms. Am. J. Math. 127, 735–783 (2005)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kottwitz, R.: Points on Shimura varieties over finite fields. J. AMS 5:373–444 (1992)Google Scholar
  29. 29.
    Lan, K-W.: Arithmetic compactifications of PEL-type Shimura varieties. Ph.D. thesis, Harvard University (2008)Google Scholar
  30. 30.
    Lan, K.-W., Suh, J.: Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties. Duke Math. J. 161(6), 1113–1170 (2012)Google Scholar
  31. 31.
    Laumon, G.: Cohomology of Drinfel’d Modular Varieties I. Cambridge University Press, Cambridge (1996)Google Scholar
  32. 32.
    Lan, K-W., Polo, P.: Dual BGG complexes for automorphic bundles. Preprint (2010)
  33. 33.
    Le Stum, B.: Rigid cohomology. In: Cambridge Tracts in Mathematics, vol. 172. Cambridge University Press, Cambridge (2007)Google Scholar
  34. 34.
    Le Stum, B.: The overconvergent site. To appear in Memoire de la SMF (2012).
  35. 35.
    Loeffler, D.: Overconvergent algebraic automorphic forms. Proc. Lond. Math. Soc. 102(2), 193–228 (2011)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Milne, J.S.: Points on Shimura varieties mod p. In: Proceedings of Symposia in Pure Mathematics, vol. 33, part 2, pp. 165–184 (1979)Google Scholar
  37. 37.
    Milne, J.S.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Automorphic Forms, Shimura Varieties, and L-functions, pp. 283–414. Proceedings of a Conference Held at the University of Michigan, Ann Arbor, July 6–16, 1988. Also available at
  38. 38.
    Milne, J.S.: Introduction to Shimura varieties. In: Arthur, J., Kottwitz, R. (eds.) Harmonic Analysis, the Trace Formula and Shimura Varieties. AMS (2005).
  39. 39.
    Mok, C.-P., Tan, F.: Overconvergent family of Siegel-Hilbert modular forms. Preprint (2012).
  40. 40.
    Nakamura, K.: Classification of split trianguline representations of p-adic fields. Compos. Math. 145(4), 865–914 (2009)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Pilloni, V.: Prolongement analytique sur les varietes de Siegel. Duke Math. J. 157(1), 167–222 (2011)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Pilloni, V., Stroh, B.: Surconvergence et classicite: le cas Hilbert. Preprint (2012)
  43. 43.
    Pilloni, V., Stroh, B.: Surconvergence et classicite: le cas deploye. Preprint (2012)
  44. 44.
    Sasaki, S.: Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representation, and weight one forms. Preprint (2012)
  45. 45.
    Shin, S.W.: On the cohomology of Rapoport-Zink spaces of EL-type. Am. J. Math. (to appear, 2012)
  46. 46.
    Taylor, R.L., Yoshida, T.: Compatibility of local and global Langlands correspondences. J. Am. Math. Soc. 20–2, 467–493 (2007)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Tian, Y.: Classicality of overconvergent Hilbert eigenforms: case of quadratic residue degree. Preprint (2012).
  48. 48.
    Tian, Y., Xiao, L.: p-adic cohomology and classicality of overconvergent Hilbert modular forms (2012)
  49. 49.
    Tzusuki, N.: On base change theorem and coherence in rigid cohomology. In: Documenta Mathematica, Extra, vol., pp. 891–918 (2003)Google Scholar
  50. 50.
    Urban, E.: Eigenvarieties for reductive groups. Ann. Math. 174(3), 1685–1784 (2011)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Yoshida, T.: Betti cohomology of Shimura varieties-the Matsushima formula. Notes.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations