Mathematische Annalen

, Volume 356, Issue 3, pp 809–817 | Cite as

The Brill–Noether curve and Prym-Tyurin varieties

Article

Abstract

We prove that the Jacobian of a general curve C of genus \(g=2a+1\), with \(a\ge 2\), can be realized as a Prym-Tyurin variety for the Brill–Noether curve \(W^{1}_{a+2}(C)\). As consequence of this result we are able to compute the class of the sum of secant divisors of the curve C, embedded with a complete linear series \(g^{a-1}_{3a-2}\).

Mathematics Subject Classification (1991)

14H40 

References

  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol I. Grundlehren der Math. Wiss. 267. Springer, Berlin (1985)Google Scholar
  2. 2.
    Beauville, A.: Diviseurs spéciaux et intersections de cycles dans la jacobienne d’une courbe algébrique. Enumerative geometry and classical algebraic geometry (Nice 1981), Progr. Math. 24, Birhäuser, 1982, 133–142Google Scholar
  3. 3.
    Birkenhake, Ch., Lange, H.: Complex Abelian Varieties. 2nd edn, Grundlehren der Math. Wiss. 302. Springer, Berlin (2004)CrossRefGoogle Scholar
  4. 4.
    Ciliberto, C.: On rationally determined line bundles on a family of projective curves with general moduli. Duke Math. 55, 909–917 (1987)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ciliberto, C., Harris, J., Teixidor i Bigas, M.: On the endomorphisms of Jac\((W^{1}_{d}(C))\) when \(\rho =1\) and C has general moduli. Classification of irregular varieties (Trento, 1990) Lecture Notes in Math, vol 1515, pp. 41–62. Springer, Berlin (1992)Google Scholar
  6. 6.
    Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus \(\ge \) 23. Invent. Math. 90, 359–387 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Farkas, G.: Higher ramification and varieties of secant divisors on the generic curve. J Lond Math Soc 78, 418–440 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Farkas, G., Ortega, A.: The maximal rank conjecture and rank two Brill–Noether theory. Pure Appl. Math. Q. 7, 1265–1296 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Fulton, W., Lazarsfeld, R.: On connectedness of degeneracy loci and special divisors. Acta Math. 146, 116–147 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lange, H., Rojas, A.: A Galois-theoretic approach to Kanev’s correspondence. Manuscripta Math. 125(2), 225–240 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Masiewicki, L.: Universal properties of Prym varieties with an application to algebraic curves of genus five. Trans. Am. Math. Soc. 222, 221–240 (1976)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mumford, D.: Prym varieties I. In: Ahlfors, L.V., Kra, I., Maskit, B., Niremberg, L. (eds.) Contributions to Analysis, pp. 325–350. Academic Press, London (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations