Skip to main content
Log in

Invariant theory for the elliptic normal quintic, I. Twists of X(5)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A genus one curve of degree 5 is defined by the \(4 \times 4\) Pfaffians of a \(5 \times 5\) alternating matrix of linear forms on \(\mathbb{P }^4\). We describe a general method for investigating the invariant theory of such models. We use it to explain how we found our algorithm for computing the invariants and to extend our method for computing equations for visible elements of order 5 in the Tate-Shafarevich group of an elliptic curve. As a special case of the latter we find a formula for the family of elliptic curves 5-congruent to a given elliptic curve in the case the 5-congruence does not respect the Weil pairing. We also give an algorithm for doubling elements in the \(5\)-Selmer group of an elliptic curve, and make a conjecture about the matrices representing the invariant differential on a genus one normal curve of arbitrary degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This change of variables was found by minimising to make the numerical factor on the right hand side of (13) a small integer, and reducing as described in [23].

References

  1. Adler, A., Ramanan, S.: Moduli of abelian varieties, Lect. Notes in Math. 1644, Springer (1996)

  2. Agashé, A., Stein, W.: Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero. Math. Comp. 74(249), 455–484 (2005). (With an appendix by J. Cremona and B. Mazur)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson, D.J.: Polynomial invariants of finite groups. In: London Mathematical Society, Lecture Note Series 190. Cambridge University Press, Cambridge (1993)

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language, J. Symb. Comb. 24, 235–265 (1997). See also http://magma.maths.usyd.edu.au/magma/

    Google Scholar 

  5. Buchsbaum, D.A., Eisenbud, D.: Gorenstein ideals of height 3. In: Seminar D. Eisenbud, B. Singh, W. Vogel, vol. 2, pp. 30–48. Teubner-Texte zur Math., vol. 48, Teubner, Leipzig (1982)

  6. Buchsbaum, D.A., Eisenbud, D.: Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99, 447–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cremona, J.E.: Algorithms for modular elliptic curves, Cambridge University Press, Cambridge (1997). See also http://www.warwick.ac.uk/masgaj/ftp/data/

  8. Cremona, J.E., Mazur, B.: Visualizing elements in the Shafarevich-Tate group. Experiment. Math. 9(1), 13–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cremona, J.E., Fisher, T.A., O’Neil, C., Simon, D., Stoll, M.: Explicit \(n\)-descent on elliptic curves. I Algebra. J. Reine Angew. Math. 615, 121–155 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Fisher, T.A.: The higher secant varieties of an elliptic normal curve, preprint. https://www.dpmms.cam.ac.uk/~taf1000/

  11. Fisher, T.A.: Testing equivalence of ternary cubics. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic number theory (ANTS-VII), Lecture Notes in Comput. Sci. 4076, pp. 333–345. Springer, Berlin (2006)

    Google Scholar 

  12. Fisher, T.A.: The invariants of a genus one curve. Proc. Lond. Math. Soc. (3) 97(3), 753–782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, T.A.: The Hessian of a genus one curve. Proc. Lond. Math. Soc. (3) 104(3), 613–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fisher, T.A.: On families of \(n\)-congruent elliptic curves, preprint, arXiv:1105.1706v1 [math.NT]

  15. Fisher, T.A.: Invariant theory for the elliptic normal quintic, II. The covering map, preprint. https://www.dpmms.cam.ac.uk/~taf1000/

  16. Fisher, T.A.: Minimisation and reduction of 5-coverings of elliptic curves. Algebra Number Theor. (to appear) arXiv:1112.5131v1

  17. Horrocks, G., Mumford, D.: A rank 2 vector bundle on \(\mathbb{P}^4\) with 15,000 symmetries. Topology 12, 63–81 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hulek, K.: Projective geometry of elliptic curves, Soc. Math. de France, Astérisque 137 (1986)

  19. Rubin, K., Silverberg, A.: Families of elliptic curves with constant mod \(p\) representations. In: Coates J., Yau S.-T. (eds.) Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory I. Int. Press, Cambridge,vol. 1995, pp. 148–161 (1993)

  20. Rubin, K., Silverberg, A.: Mod 2 representations of elliptic curves. Proc. Amer. Math. Soc. 129(1), 53–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shepherd-Barron, N.I., Taylor, R.: Mod 2 and mod 5 icosahedral representations. J. Amer. Math. Soc. 10(2), 283–298 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Silverberg, A.: Explicit families of elliptic curves with prescribed mod \(N\) representations. In: Cornell, G., Silverman, J.H., Stevens, G. (eds.) Modular forms and Fermat’s last theorem, (Boston, MA, 1995), pp. 447–461. Springer, New York (1997)

  23. Stoll, M., Cremona, J.E.: On the reduction theory of binary forms. J. Reine Angew. Math. 565, 79–99 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Hans–Christian, G.B., Hulek, K.: Geometric syzygies of elliptic normal curves and their secant varieties. Manuscripta Math. 113(1), 35–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vélu, J.: Courbes elliptique munies d’un sous-group \(\mathbb{Z}/n\mathbb{Z}\times \mu _n\), Bull. Soc. Math. France, Mémoire 57 (1978)

  26. Wuthrich, C.: Une quintique de genre 1 qui contredit le principe de Hasse. Enseign. Math. (2) 47(1–2), 161–172 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, T. Invariant theory for the elliptic normal quintic, I. Twists of X(5). Math. Ann. 356, 589–616 (2013). https://doi.org/10.1007/s00208-012-0850-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0850-9

Mathematics Subject Classification (1991)

Navigation