Skip to main content
Log in

The Saito–Kurokawa lifting and Darmon points

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(E_{/_\mathbb{Q }}\) be an elliptic curve of conductor \(Np\) with \(p\not \mid N\) and let \(f\) be its associated newform of weight \(2\). Denote by \(f_\infty \) the \(p\)-adic Hida family passing though \(f\), and by \(F_\infty \) its \(\varLambda \)-adic Saito–Kurokawa lift. The \(p\)-adic family \(F_\infty \) of Siegel modular forms admits a formal Fourier expansion, from which we can define a family of normalized Fourier coefficients \(\{\widetilde{A}_T(k)\}_T\) indexed by positive definite symmetric half-integral matrices \(T\) of size \(2\times 2\). We relate explicitly certain global points on \(E\) (coming from the theory of Darmon points) with the values of these Fourier coefficients and of their \(p\)-adic derivatives, evaluated at weight \(k=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrianov, A.N.: Modular descent and the Saito-Kurokawa conjecture. Invent. Math. 53(3), 267–280 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertolini, M., Darmon, H.: Hida families and rational points on elliptic curves. Invent. Math. 168(2), 371–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertolini, M., Darmon, H.: The rationality of Stark-Heegner points over genus fields of real quadratic fields. Annals of Math. 170, 343–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brumer, A., Kramer, K.: Paramodular Abelian Varieties of Odd Conductor. (arXiv:1004.4699) (2010)

  5. Bump, D., Friedberg, S., Hoffstein, J.: Nonvanishing theorems for L-functions of modular forms and their derivatives. Invent. Math. 102(3), 543–618 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darmon, H.: Integration on \({\cal H}_{p}\times {\cal H}\) and arithmetic applications. Ann. of Math. (2) 154(3), 589–639 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Darmon, H., Tornaria, G.: Stark-Heegner points and the Shimura correspondence. Compositio Math. 144, 1155–1175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eichler, M., Zagier, D.: The theory of Jacobi forms. Progress in Mathematics, vol. 55. Birkhäuser Boston, Inc., Boston (1985)

  9. Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111(2), 407–447 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guerzhoy, P.: On p-adic families of Siegel cusp forms in the Maass Spezialschar. J. Reine Angew. Math. 523, 103–112 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Hida, H.: Galois representations into \(\text{ GL}_{2}(\mathbb{Z}_{p}[\![X]\!])\) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ibukiyama, T.: Saito-Kurokawa lifting of level N and practical construction of Jacobi forms. Kyōto J. Math. 52(1), 141–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kawamura, H.: On Certain Constructions of p-adic Families of Siegel Modular Forms of Even Genus. (arxiv 1011.6476v1) (2010)

  14. Koblitz, N.: Introduction to elliptic curves and modular forms. Graduate Texts in Mathematics, vol. 97, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  15. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271(2), 237–268 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohnen, W.: Lifting modular forms of half-integral weight to Siegel modular forms of even genus. Math. Ann. 322(4), 787–809 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kohnen, W., Zagier, D.: Values of L-series of modular forms at the center of the critical strip. Invent. Math. 64(2), 175–198 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z.: On \(\Lambda \)-adic Saito–Kurokawa Lifting and its Application, Ph.D. thesis, Columbia U (2009)

  19. Longo, M., Rotger, V., Vigni, S.: Special values of L-functions and the arithmetic of Darmon points, J. Reine Angew. Math. doi:10.1515/crelle-2011-0005

  20. Manickam, M., Ramakrishnan, B., Vasudevan, T.C.: On Saito-Kurokawa descent for congruence subgroups. Manuscripta Math. 81(1–2), 161–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manickam, M., Ramakrishnan, B.: On Saito-Kurokawa correspondence of degree two for arbitrary level. J. Ramanujan Math. Soc. 17(3), 149–160 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Poor, C., Yuen, D.: Paramodular Cusp Forms, (arXiv:0912.0049) (2009)

  23. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  24. Shimura, G.: The periods of certain automorphic forms of arithmetic type. J. Fac. Sci. Univ. Tōkyō Sect. IA Math. 28 (1981), (3), 605–632 (1982)

  25. Stevens, G.: \(\Lambda \)-adic modular forms of half-integral weight and a \(\Lambda \)-adic Shintani lifting. Arithmetic geometry (Tempe, AZ, 1993) 129–151. Contemp. Math., pp. 174. Am. Math. Soc., Providence, RI (1994)

  26. Waldspurger, J.-L.: Correspondances de Shimura et quaternions. Forum Math. 3(3), 219–307 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yoshida, H.: Siegel’s modular forms and the arithmetic of quadratic forms. Invent. Math. 60(3), 193–248 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank: H. Kawamura for kindly contributing his expertise on the Saito–Kurokawa lifting, and for immediately pointing out a mistake in a preliminary version of this paper; H. Katsurada for mentioning [12] and thus providing the correct tool the rectify the above mistake; T. Ibukiyama for sending us the preprint [12] before its public distribution; and the Hakuba conference organizers of 2007 and 2008 for giving the second author the chance to learn about explicit formulae for classical automorphic forms from the experts. This work was entirely completed while the second author (and for a short stay, the first author) enjoyed the hospitality of the Max Planck Institute für Mathematik in Bonn. Finally, we would like to thank the referee for his/her careful reading of the manuscript and for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Longo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, M., Nicole, MH. The Saito–Kurokawa lifting and Darmon points. Math. Ann. 356, 469–486 (2013). https://doi.org/10.1007/s00208-012-0846-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0846-5

Mathematics Subject Classification (1991)

Navigation