Skip to main content
Log in

\(C^*\)-algebras of Toeplitz type associated with algebraic number fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We associate with the ring \(R\) of algebraic integers in a number field a C*-algebra \({\mathfrak T }[R]\). It is an extension of the ring C*-algebra \({\mathfrak A }[R]\) studied previously by the first named author in collaboration with X. Li. In contrast to \({\mathfrak A }[R]\), it is functorial under homomorphisms of rings. It can also be defined using the left regular representation of the \(ax+b\)-semigroup \(R\rtimes R^\times \) on \(\ell ^2 (R\rtimes R^\times )\). The algebra \({\mathfrak T }[R]\) carries a natural one-parameter automorphism group \((\sigma _t)_{t\in {\mathbb R }}\). We determine its KMS-structure. The technical difficulties that we encounter are due to the presence of the class group in the case where \(R\) is not a principal ideal domain. In that case, for a fixed large inverse temperature, the simplex of KMS-states splits over the class group. The “partition functions” are partial Dedekind \(\zeta \)-functions. We prove a result characterizing the asymptotic behavior of quotients of such partial \(\zeta \)-functions, which we then use to show uniqueness of the \(\beta \)-KMS state for each inverse temperature \(\beta \in (1,2]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bost, J.-B., Connes, A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Sel. Math. (N.S.) 1(3), 411–457 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourbaki, N.: Commutative algebra. In: Elements of Mathematics (Berlin), chapters 1–7. Springer, Berlin (1989, translated from the French, reprint of the 1972 edition)

  3. Bratteli, O., Robinson D.W.: Operator algebras and quantum statistical mechanics. 2. Texts and monographs in physics. In: Equilibrium States. Models in Quantum Statistical Mechanics, 2nd edn. Springer, Berlin (1997)

  4. Cuntz, J.: \(C^*\)-algebras associated with the \(ax+b\)-semigroup over \({\mathbb{N}}\). In: Cortiñas, G. et al. (eds) \(K\)-theory and noncommutative geometry. Proceedings of the ICM.: satellite conference, Valladolid, Spain, August 31–September 6, 2006. European Mathematical Society (EMS), Zürich. Series of Congress Reports, 201–215 (2008)

  5. Cuntz, J., Li, X.: The regular \(C^{\ast }\)-algebra of an integral domain. Clay Math. Proc. 10, 149–170 (2010)

    MathSciNet  Google Scholar 

  6. Cuntz, J., Li, X.: C*-algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom. 5(1), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geroldinger, A., Halter-Koch, F.: Non-unique factorizations. In: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics (Boca Raton), vol. 278. Chapman& Hall/CRC, Boca Raton (2006)

  8. Laca, M.: From endomorphisms to automorphisms and back: dilations and full corners. J. London Math. Soc. (2) 61(3), 893–904 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laca, M., Neshveyev, S.: Type \({III}_1\) equilibrium states of the Toeplitz algebra of the affine semigroup over the natural numbers. J. Funct. Anal. 261(2), 169–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laca, M., Larsen, N., Neshveyev, S.: On Bost–Connes systems for number fields. J. Number Theory 129, 325–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laca, M., Neshveyev, S., Trifkovic, M.: Bost–Connes systems. In: Hecke Algebras and Induction (preprint, arXiv:1010.4766)

  12. Laca, M., Raeburn, I.: Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal. 139(2), 415–440 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laca, M., Raeburn, I.: Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers. Adv. Math. 225(2), 643–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laca, M., van Frankenhuijsen, M.: Phase transitions on Hecke \(C^*\)-algebras and class-field theory over \({\mathbb{Q}}\). J. Reine Angew. Math. 595, 25–53 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Li, X.: Ring C\(^*\)-algebras. Math. Ann. 348(4), 859–898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X.: Semigroup \(C^*\)-algebras and amenability of semigroups (preprint, arXiv:1105.5539, 2011)

  17. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin (1990)

    MATH  Google Scholar 

  18. Neshveyev, S.: Traces on crossed products (preprint, 2010)

  19. Neukirch, J.: Algebraic number theory. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin [Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by Harder G (1999)]

  20. Peebles, J.: The Toeplitz \(C^{\ast }\)-algebra of the semigroup of principal ideals in a number field. MSc. Thesis, University of Victoria. https://dspace.library.uvic.ca:8443/handle/1828/2380 (2005)

  21. Thoma, E.: Über unitäre Darstellungen abzählbarer, diskreter. Math. Ann. 153, 111–138 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Cuntz.

Additional information

J. Cuntz’s research was supported by DFG through CRC 878 and by ERC through AdG 267079, C. Deninger’s research was supported by DFG through CRC 878 and M. Laca’s research was supported by NSERC and PIMS.

Appendices

Appendix A: Asymptotics for partial \(\zeta \)-functions

As above let \(R\) be the ring of algebraic integers in a number field \(K\). Also let \(P_1,P_2,\ldots \) be an enumeration of the prime ideals in \(R\) such that \(N (P_i) \le N (P_{i+1})\) for all \(i \ge 1\) and let \(\mathcal I _n\) be the semigroup generated by \(P_1,P_2,\ldots ,P_n\). For each \(\gamma \) in the class group \(\Gamma \) of \(K\) and each \(0<\sigma \le 1\) set

$$\begin{aligned} \zeta ^{(n)}_\gamma (\sigma ) =\sum _{I\in \mathcal I _n\cap \gamma }N(I)^{-\sigma } \end{aligned}$$

Recall the statement of Theorem 6.6:   Let \(0<\sigma \le 1\). Then for any two ideal classes \(\gamma _1,\gamma _2\) we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\;\frac{\zeta ^{(n)}_{\gamma _1} (\sigma )}{\zeta ^{(n)}_{\gamma _2} (\sigma )}\;=1. \end{aligned}$$

Proof of Theorem 6.6

Let \(\psi _\gamma :\Gamma \rightarrow \{0,1\}\) denote the characteristic function of the one-point set \(\{\gamma \}\). For every character \(\chi \) of the abelian group \(\Gamma \) let \(a_\gamma (\chi )= |\Gamma |^{-1} \overline{\chi (\gamma )}\) so that

$$\begin{aligned} \psi _\gamma =\sum _{\chi \in \hat{\Gamma }}a_\gamma (\chi )\chi \end{aligned}$$

In the following we also consider \(\chi \) and \(\psi _\gamma \) as functions on the set of non-zero integral ideals. We have

$$\begin{aligned} \zeta _\gamma ^{(n)}(\sigma )&= \sum _{I\in \mathcal I _n}\psi _{\gamma } (I)N(I)^{-\sigma }= \sum _{\chi \in \hat{\Gamma }}\left(a_\gamma (\chi )\sum _{I\in \mathcal I _n}\chi (I)N(I)^{-\sigma }\right)\nonumber \\&= \sum _{\chi \in \hat{\Gamma }}\left(a_\gamma (\chi ) \prod _{i=1}^n \left(1-\chi (P_i)N(P_i)^{-\sigma }\right)^{-1}\right) \end{aligned}$$
(13)

In order to study the asymptotics of \(\prod _{i=1}^n \left(1-\chi (P_i)N(P_i)^{-\sigma }\right)^{-1}\) for \(n\rightarrow \infty \) we consider

$$\begin{aligned} f_n(\chi ,\sigma )&= \log \prod _{i=1}^n \left(1-\chi (P_i)N(P_i)^{-\sigma }\right)^{-1}\nonumber \\&:= \sum _{\nu =1}^\infty \frac{1}{\nu }\sum _{i=1}^n \chi (P_i^\nu )N(P_i)^{-\nu \sigma } \end{aligned}$$
(14)

Up to finitely many terms the first sum is bounded by a constant which is independent of \(n\):

$$\begin{aligned} \left| \sum _{\nu > 1/\sigma } \frac{1}{\nu } \sum ^n_{i=1} \chi (P^{\nu }_i) N (P_i)^{-\nu \sigma }\right|&\le \sum _{\nu > 1/\sigma } \frac{1}{\nu } \sum ^{\infty }_{i=1} N (P_i)^{-\nu \sigma } \\&= \sum ^{\infty }_{i=1} N(P_i)^{-\sigma [1/\sigma ]} \sum ^{\infty }_{\nu =1} \frac{N (P_i)^{-\nu \sigma }}{\nu + [1/ \sigma ]} \\&\le \sum ^{\infty }_{i=1} N (P_i)^{-\sigma [1/\sigma ]} \frac{N(P_i)^{-\sigma }}{1-N (P_i)^{-\sigma }} \\&\le \frac{1}{1-2^{-\sigma }} \sum ^{\infty }_{i=1} N (P_i)^{-\sigma (1 + [1/\sigma ])} \\&< \frac{1}{1-2^{-\sigma }} \zeta _K (\sigma (1 + [1/\sigma ]) < \infty . \end{aligned}$$

Therefore

$$\begin{aligned} f_n (\chi , \sigma ) =\sum _{1\le \nu \le 1/\sigma }\frac{1}{\nu }\sum _{i=1}^n \chi (P_i^\nu )N(P_i)^{-\nu \sigma }\,+\,O(1) \end{aligned}$$
(15)

where the \(O\)-constant depends on \(\sigma \) but not on \(n\) or \(\chi \).

Let us now fix some \(1 \le \nu \le 1/\sigma \). The values of \(\chi \) are \(h\)th roots of unity where \(h=|\Gamma |\) is the class number. We get

$$\begin{aligned} \sum ^n_{i=1} \chi (P^{\nu }_i) N(P_i)^{-\nu \sigma } = \sum _{\zeta ^h=1} \zeta ^{\nu } \sum _{\gamma \in \chi ^{-1} (\zeta )} \omega ^{(\nu \sigma )}_{\gamma } (n). \end{aligned}$$
(16)

Here for \(\kappa \in \mathbb R , \gamma \in \Gamma \) and \(n \ge 1\) we have set:

$$\begin{aligned} \omega ^{(\kappa )}_{\gamma } (n) = \sum \limits ^{n}_{{\small \begin{array}{c}i=1\\ P_i \in \gamma \end{array}}}N (P_i)^{-\kappa }. \end{aligned}$$

Lemma A.1

Fix some \(0 \le \kappa \le 1\) and write \(\omega _{\gamma } (n) = \omega ^{(\kappa )}_{\gamma } (n)\). Set

$$\begin{aligned} \omega (n) = \frac{1}{h} \sum ^n_{i=1} N (P_i)^{-\kappa }. \end{aligned}$$

Then \(\omega (n) \rightarrow \infty \) as \(n \rightarrow \infty \) and for arbitrary \(\gamma \in \Gamma \) we have \(\lim _{n\rightarrow \infty } \frac{\omega _{\gamma } (n)}{\omega (n)} = 1\).

The proof of the lemma is given below. For \(1 \le \nu \le 1/\sigma \) we have \(0 < \kappa = \nu \sigma \le 1\). Using (16) and the lemma, we get for \(n \rightarrow \infty \):

$$\begin{aligned} \frac{1}{\omega (n)} \sum ^n_{i=1} \chi (P^{\nu }_i) N (P_i)^{-\nu \sigma } \rightarrow \sum _{\zeta ^h=1} \zeta ^{\nu } |\chi ^{-1} (\zeta )|. \end{aligned}$$

We have the identities

$$\begin{aligned} \sum _{\zeta ^h =1}\zeta ^\nu |\chi ^{-1}(\zeta )|= |\mathrm{Ker\,}(\chi )|\sum _{\zeta \in \mathrm{Im\,}\chi }\zeta ^\nu =\left\{ \begin{array}{l} h \quad \text{ if}\;|\mathrm{Im\,}\chi |\,\mid \,\nu \\ 0\quad \text{ if}\;|\mathrm{Im\,}\chi |\,\not \mid \,\nu \end{array}\right. \end{aligned}$$

Therefore, using (15) we get

$$\begin{aligned} \lim _{n\rightarrow \infty } \; \frac{1}{\omega (n)}f_n(\chi ,\sigma ) = \alpha (\chi ):= h\sum _{1\le \nu \le 1/\sigma ,\,|\mathrm{Im\,}\chi |\big |\nu }\frac{1}{\nu } \ge 0 \end{aligned}$$
(17)

Note that if \(\chi \) is not the trivial character \(\mathbf 1 \), then \(\alpha (\chi )<\alpha (\mathbf 1 )\).

Let

$$\begin{aligned} L_n(\chi ,\sigma )\mathrel {:=}\prod _{i=1}^n \left(1-\chi (P_i)N(P_i)^{-\sigma }\right)^{-1}=\exp f_n(\chi ,\sigma ) \end{aligned}$$
(18)

From (13) we get

$$\begin{aligned} \zeta ^{(n)}_\gamma (\sigma ) = \sum _\chi a_\gamma (\chi )L_n(\chi ,\sigma ) \end{aligned}$$

Because of (17) and (18) one knows that for \(n\rightarrow \infty \)

$$\begin{aligned} 0\,<\,L_n(\mathbf 1 ,\sigma ) = \prod _{i=1}^n \left(1-N(P_i)^{-\sigma } \right)^{-1}\longrightarrow \infty \end{aligned}$$

Also

$$\begin{aligned} \Big |\frac{L_n(\chi ,\sigma )}{L_n(\mathbf 1 ,\sigma )}\Big |\,=\,\exp \mathrm Re \left(f_n(\chi ,\sigma )-f_n(\mathbf 1 ,\sigma )\right) \end{aligned}$$

Now assume that \(\chi \ne \mathbf 1 \). Since \(\omega (n)\rightarrow \infty \) and

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{1}{\omega (n)}\left(f_n(\chi ,\sigma )-f_n(\mathbf 1 ,\sigma )\right) = \alpha (\chi )-\alpha (\mathbf 1 )\,<\,0 \end{aligned}$$

by (17), we find that

$$\begin{aligned} \lim _{n\rightarrow \infty }\mathrm Re \left(f_n(\chi ,\sigma )-f_n(\mathbf 1 ,\sigma )\right) =\,-\infty \end{aligned}$$

and thus

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{L_n(\chi ,\sigma )}{L_n(\mathbf 1 ,\sigma )}=\,0\quad \mathrm{for}\,\chi \ne \mathbf 1 \end{aligned}$$

This gives:

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\zeta ^{(n)}_\gamma (\sigma )}{L_n(\mathbf 1 ,\sigma )}=a_\gamma (\mathbf 1 ) =\frac{1}{h} \end{aligned}$$

and hence

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\zeta ^{(n)}_\gamma (\sigma )}{\zeta ^{(n)}_\eta (\sigma )}=\,1 \end{aligned}$$

for any two ideal classes \(\gamma \) and \(\eta \).

It remains to prove lemma A.1. For this we need a version of the prime number theorem for prime ideals in a given ideal class with a simple remainder term. For \(x \ge 0\) let \(\pi _K (\gamma , x)\) denote the number of prime ideals \(P\) in \(\gamma \) with \(N (P) \le x\). Using the relation

$$\begin{aligned} \mathrm li \, (x) = \frac{x}{\log x} + O \left( \frac{x}{(\log x)^2} \right) \quad \text{ for} \; x \rightarrow \infty \end{aligned}$$

the corollary after lemma 7.6 in chap. 7, § 2 of [17] implies the following asymptotics:

$$\begin{aligned} \pi _K (\gamma , x) = \frac{1}{h} \frac{x}{\log x} + O \left( \frac{x}{(\log x)^2} \right) \end{aligned}$$
(19)

For \(x \ge 0\) and \(\kappa \le 1\) let us write:

$$\begin{aligned} \Omega _{\gamma } (x) = \Omega ^{(\kappa )}_{\gamma } (x) = {\mathop {\mathop {\sum \limits _{N (P) \le x}}\limits _{P \in \gamma }}} N (P)^{-\kappa } \end{aligned}$$

and

$$\begin{aligned} \Omega (x) = \Omega ^{(\kappa )} (x) = \frac{1}{h} \sum _{N (P) \le x} N (P)^{-\kappa }. \end{aligned}$$

We now use the following version of summation by parts: Consider a function \(f\) on the integers \(\nu \ge 1\) and a \(C^1\)-function \(g\) on \([1,\infty )\). For \(x \ge 1\) we set \(M_f (x) = \sum _{\nu \le x} f (\nu )\). Then we have

$$\begin{aligned} \sum _{\nu \le x} f (\nu ) g (\nu ) = M_f (x) g (x) - \int ^x_1 M_f (t) g^{\prime } (t)\,dt. \end{aligned}$$

Setting \(f (\nu ) = \big | \{ P \, | \,P \in \gamma \) and \(N (P) = \nu \}\big |\) and \(g (x) = x^{-\kappa }\) we have

$$\begin{aligned} \Omega _{\gamma } (x) = \sum _{\nu \le x} f (\nu ) g (\nu ) \quad \text{ and} \quad M_f (x) = \pi _K (\gamma , x). \end{aligned}$$

Hence using (19) we get for \(x \rightarrow \infty \):

$$\begin{aligned} \Omega _{\gamma } (x)&= \pi _K (\gamma , x) x^{-\kappa } + \kappa \int ^x_2 \pi _K (\gamma , t) t^{-\kappa } \frac{dt}{t}\\&= \frac{1}{h} \frac{x^{1-\kappa }}{\log x} + \frac{\kappa }{h} \int ^x_2 \frac{t^{-\kappa }}{\log t}\,dt + O \left( \frac{x^{1-\kappa }}{(\log x)^2} \right) + O \left( \int ^x_2 \frac{t^{-\kappa }}{(\log t)^2}\,dt \right). \end{aligned}$$

For \(\kappa < 1\) we have:

$$\begin{aligned} \int ^x_e \frac{t^{-\kappa }}{(\log t)^2}\,dt&= \int ^{\sqrt{x}}_e \frac{t^{-\kappa }}{(\log t)^2}\,dt + \int ^x_{\sqrt{x}} \frac{t^{-\kappa }}{(\log t)^2}\,dt \\&\le \int ^{\sqrt{x}}_e t^{-\kappa }\,dt + \frac{1}{(\log \sqrt{x})^2} \int ^x_{\sqrt{x}} t^{-\kappa }\,dt\\&= O \left( \frac{x^{1-\kappa }}{(\log x)^2} \right)\;. \end{aligned}$$

Hence we get for \(\kappa < 1\):

$$\begin{aligned} \Omega _{\gamma } (x) = \frac{1}{h} \frac{x^{1-\kappa }}{\log x} + \frac{\kappa }{h} \int ^x_2 \frac{t^{-\kappa }}{\log t}\,dt + O \left( \frac{x^{1-\kappa }}{(\log x)^2} \right). \end{aligned}$$
(20)

For the case \(\kappa = 1\) note that

$$\begin{aligned} \int ^x_2 \frac{t^{-1}}{(\log t)^2} \, dt = \frac{1}{\log 2} - \frac{1}{\log x} = O (1) \end{aligned}$$

and

$$\begin{aligned} \int ^x_2 \frac{t^{-1}}{\log t} \, dt = \log \log x + O (1). \end{aligned}$$

Thus for \(\kappa = 1\) we get

$$\begin{aligned} \Omega _{\gamma } (x) = \frac{1}{h} \log \log x + O (1). \end{aligned}$$
(21)

Relations (20) and (21) also hold for \(\Omega (x)\) instead of \(\Omega _{\gamma } (x)\) since the right hand sides do not depend on \(\gamma \) and \(\Omega (x) = h^{-1} \sum _{\gamma \in \Gamma } \Omega _{\gamma } (x)\). It follows that for \(\kappa \le 1\) we have \(\Omega _{\gamma } (x) \sim \Omega (x)\). It remains to show that for \(n \rightarrow \infty \) we have \(\omega _{\gamma } (n) \sim \omega (n)\) as well. For a given prime number \(p\) there are at most \((K: \mathbb Q )\) different prime ideals \(P\) in \(R\) with \(P \, | \,p\). It follows that for every \(\nu \ge 1\) the equation \(N (P) = \nu \) has at most \((K: \mathbb Q )\) solutions in primes \(P\) of \(R\). Since \(N (P_i) \le N (P_{i+1})\) for all \(i\) we therefore get:

$$\begin{aligned} \omega _{\gamma } (n)&= \Omega _{\gamma } (N (P_n)) + O (N (P_n)^{-\kappa })\\&= \Omega _{\gamma } (N (P_n)) + O (1) \quad \text{ since} \; \kappa \ge 0 \end{aligned}$$

and analogously

$$\begin{aligned} \omega (n) = \Omega (N (P_n)) + O (1). \end{aligned}$$

This implies the result.\(\square \)

Appendix B: List of notations

For \(u^x,s_a,e_I\) see Definition 2.1. The projections \(f_I,\varepsilon _I\) are introduced before Lemma 2.4. The commutative subalgebra \(\bar{\mathcal D }\) is introduced at the beginning of Sect.4. \(\mathcal I _n,\mathcal D _n,\bar{\mathcal D }_n\) are introduced after Lemma 4.5. The representation \(\mu \) of \(\mathfrak T [R]\) is defined before Lemma 4.6. The minimal projections \(\delta ^x_{I,n}\) in \(\mathcal D _n\) are introduced in Lemma 4.7. \(e_I^x\) is defined after 4.8. For \(Y_R\) see Remark 4.10. The notation \(\mathfrak T \) is introduced after Corollary 4.14. The automorphism \(\sigma _t\) is defined at the beginning of Sect.6. \(R^*\) denotes the group of units (invertible elements) in \(R\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuntz, J., Deninger, C. & Laca, M. \(C^*\)-algebras of Toeplitz type associated with algebraic number fields. Math. Ann. 355, 1383–1423 (2013). https://doi.org/10.1007/s00208-012-0826-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0826-9

Mathematics Subject Classification (2000)

Navigation