Skip to main content
Log in

Periods of rational maps modulo primes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let K be a number field, let \({\varphi \in K(t)}\) be a rational map of degree at least 2, and let \({\alpha, \beta \in K}\) . We show that if α is not in the forward orbit of β, then there is a positive proportion of primes \({\mathfrak{p}}\) of K such that \({\alpha {\rm mod} \mathfrak{p}}\) is not in the forward orbit of \({\beta {\rm mod} \mathfrak{p}}\) . Moreover, we show that a similar result holds for several maps and several points. We also present heuristic and numerical evidence that a higher dimensional analog of this result is unlikely to be true if we replace α by a hypersurface, such as the ramification locus of a morphism \({\varphi: \mathbb{P}^{n} \to \mathbb{P}^{n}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary A., Ghioca D.: Periods of orbits modulo primes. J. Number Theory 129(11), 2831–2842 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc., New York (1992). Reprint of the 1972 edition

  3. Bach E.: Toward a theory of Pollard’s rho method. Inform. Comput. 90(2), 139–155 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto, R.L., Ghioca, D., Kurlberg, P., Tucker, T.J.: A case of the dynamical Mordell–Lang conjecture, with an Appendix by U. Zannier. Math. Ann. (2011, in press)

  5. Bell J.P., Ghioca D., Tucker T.J.: The dynamical Mordell–Lang problem for étale maps. Am. J. Math. 132(6), 1655–1675 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Fakhruddin N.: Questions on self maps of algebraic varieties. J. Ramanujan Math. Soc. 18(2), 109–122 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Faber, X.W.C., Voloch, J.F.: On the number of places of convergence of Newton’s method over number fields. J. Théor. Nombres Bordeaux (2011, in press)

  8. Ghioca D., Tucker T.J.: Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory 129(6), 1392–1403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guralnick, R.M., Tucker, T.J., Zieve, M.E.: Exceptional covers and bijections on rational points. Int. Math. Res. Notes IMRN no. 1 (2007). art. ID rnm004, 20

  10. Ghioca D., Tucker T.J., Zieve M.E.: Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture. Invent. Math. 171(2), 463–483 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghioca, D., Tucker, T.J., Zieve, M.E.: Linear relations between polynomial orbits (2011, submitted). arXiv:0807.3576

  12. Ghioca, D., Tucker, T.J., Zieve, M.E.: The Mordell–Lang question for endomorphisms of semiabelian varieties. J. de Théor. Nombres Bordeaux (2011, in press)

  13. Jones R.: The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. (2) 78(2), 523–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morton, P., Silverman, J.H.: Rational periodic points of rational functions. Internat. Math. Res. Notices 2, 97–110 (1994)

    Google Scholar 

  15. Odoni R.W.K.: The Galois theory of iterates and composites of polynomials. Proc. Lond. Math. Soc. (3) 51(3), 385–414 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pink R.: On the order of the reduction of a point on an abelian variety. Math. Ann. 330(2), 275–291 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Pollard J.M.: A Monte Carlo method for factorization. Nordisk Tidskr. Informationsbehandling (BIT) 15(3), 331–334 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Silverman J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer, New York (1986)

    Google Scholar 

  19. Silverman J.H.: Integer points, Diophantine approximation, and iteration of rational maps. Duke Math. J. 71(3), 793–829 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Silverman J.H.: Variation of periods modulo p in arithmetic dynamics. NY J. Math. 14, 601–616 (2008)

    MATH  Google Scholar 

  21. Stevenhagen P., Lenstra H.W. Jr.: Chebotarëv and his density theorem. Math. Intell. 18(2), 26–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, S.: Distributions in Algebraic Dynamics. Survey in Differential Geometry, vol. 10, pp. 381–430. International Press, Somerville (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, R.L., Ghioca, D., Hutz, B. et al. Periods of rational maps modulo primes. Math. Ann. 355, 637–660 (2013). https://doi.org/10.1007/s00208-012-0799-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0799-8

Keywords

Navigation