Skip to main content
Log in

Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We deal with an inverse obstacle problem for general second order scalar elliptic operators with real principal part and analytic coefficients near the obstacle. We assume that the boundary of the obstacle is a non-analytic hypersurface. We show that, when we put Dirichlet boundary conditions, one measurement is enough to reconstruct the obstacle. In the Neumann case, we have results only for n = 2, 3 in general. More precisely, we show that one measurement is enough for n = 2 and we need 3 linearly independent inputs for n = 3. However, in the case for the Helmholtz equation, we only need n − 1 linearly independent inputs, for any n ≥ 2. Here n is the dimension of the space containing the obstacle. These are justified by investigating the analyticity properties of the zero set of a real analytic function. In addition, we give a reconstruction procedure for each case to recover the shape of obstacle. Although we state the results for the scattering problems, similar results are true for the associated boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandrini G., Rondi L.: Determining a sound-soft polyhedral scatterer by a single far-field measurement. Proc. Am. Math. Soc. 133(6), 1685–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, J., Yamamoto, M.: Corrigendum: “Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves” [Inverse Problems 19 (2003), no. 6, 1361–1384]. Inverse Problems 21 (2005)

  3. Colton D., Sleeman B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31(3), 253–259 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colton D., Kress R.: Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Elschner J., Yamamoto M.: Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave. Inverse Problems 22(1), 355–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feijoo G.R., Oberai A., Pinsky P.M.: An application of shape optimization in the solution of inverse scattering problems. Inverse Problems 20, 199–228 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gintides D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality. Inverse Problems 21(4), 1195–1205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Honda, N., Potthast, R., Nakamura, G., Sini, M.: The no-response approach and its relation to non-iterative methods for the inverse scattering. Ann. Mat. Pura Appl. 187(4) (2008)

  9. Isakov, V.: Inverse problems for partial differential equations. Springer Series in Applied Math. Science, vol. 127. Springer, Berlin (1998)

  10. Isakov V.: Stability estimates for obstacles in inverse scattering. J. Comput. Appl. Math. 42, 79–89 (1991)

    Article  MathSciNet  Google Scholar 

  11. Isakov V.: New stability results for soft obstacles in inverse scattering. Inverse Problems 9(5), 535–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara M., Schapira P.: Sheaves on manifolds. Grundlehren der mathematischen Wissenschaften 292. Springer, Berlin (1990)

    Google Scholar 

  13. Keller J.B., Givoli D.: Exact non-reflecting boundary conditions. J. Comput. Phys. V 82, 172–192 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirsch, A., Grinberg, N.: The factorization method for inverse problems. Oxford Lecture Series in Mathematics and its Applications, vol. 36. Oxford University Press, Oxford (2008)

  15. Lax P.D., Phillips R.S.: Scattering Theory. Pure and Applied Mathematics, vol. 26. Academic Press, New York (1967)

    Google Scholar 

  16. Lin, F-H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. XLIV, 287–308 (1991)

  17. Liu H., Zou J.: On unique determination of partially coated polyhedral scatterers with far field measurements. Inverse Problems 23(1), 297–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu H., Zou J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Problems 22(2), 515–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176, 1–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Narasimhan, R.: Introduction to the theory of analytic spaces. Lecture Notes in Math., vol. 25. Springer, Berlin (1966)

  21. Nakamura G., Potthast R., Sini M.: Unification of the probe and singular sources methods for the inverse boundary value problem by the no-response test. Commun. Partial Differ. Equ. 31(10–12), 1505–1528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. O’dell S.: Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potential and embedded obstacles. Inverse problems V 22, 1579–1603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potthast, R.: Point sources and multipoles in inverse scattering theory. In: Research Notes in Mathematics, vol. 427. Chapman-Hall/CRC, Boca Raton (2001)

  24. Potthast R.: Sampling and probe methods: an algorithmical view. Computing 75(2–3), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Potthast R.: On the convergence of the no response test. SIAM J. Math. Anal. 38(6), 1808–1824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ramm A.G.: Uniqueness of the solution to inverse obstacle scattering problem. Phys. Lett. A 347(4–6), 157–159 (2005)

    Article  MATH  Google Scholar 

  27. Rondi L.: Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ. Math. J. 52(6), 1631–1662 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sincich E., Sini M.: Local stability for soft obstacles by a single measurement. Inv. Prob. Imaging 2(2), 301–315 (2008)

    Article  MathSciNet  Google Scholar 

  29. Stefanov P., Uhlmann G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132(5), 1351–1354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, N., Nakamura, G. & Sini, M. Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators. Math. Ann. 355, 401–427 (2013). https://doi.org/10.1007/s00208-012-0786-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0786-0

Keywords

Navigation