Skip to main content
Log in

Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish Strichartz estimates for the Schrödinger equation on Riemannian manifolds (Ω, g) with boundary, for both the compact case and the case that Ω is the exterior of a smooth, non-trapping obstacle in Euclidean space. The estimates for exterior domains are scale invariant; the range of Lebesgue exponents (p, q) for which we obtain these estimates is smaller than the range known for Euclidean space, but includes the key \({L^{4}_{t}L^{\infty}_x}\) estimate, which we use to give a simple proof of well-posedness results for the energy critical Schrödinger equation in 3 dimensions. Our estimates on compact manifolds involve a loss of derivatives with respect to the scale invariant index. We use these to establish well-posedness for finite energy data of certain semilinear Schrödinger equations on general compact manifolds with boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anton R.: Global existence for defocusing cubic NLS and Gross–Pitaevskii equations in exterior domains. J. Math. Pures Appl. 89(4), 335–354 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Blair M.D., Smith H.F., Sogge C.D.: On Strichartz estimates for Schrödinger operators in compact manifolds with boundary. Proc. Am. Math. Soc. 136, 247–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blair M.D., Smith H.F., Sogge C.D.: Strichartz estimates for the wave equation on manifolds with boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1817–1829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq N., Gérard P., Tzvetkov N.: On nonlinear Schrodinger equations in exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 295–318 (2004)

    MATH  Google Scholar 

  5. Burq N., Gérard P., Tzvetkov N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126, 569–605 (2004)

    Article  MATH  Google Scholar 

  6. Constantin P., Saut J.C.: Local smoothing properties of dispersive equations. J. Am. Math Soc. 1, 413–439 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davies E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  8. Ginibre J., Velo G.: On the global Cauchy problem for some nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 309–323 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Herr, S.: The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds. Am. J. Math. (in press)

  10. Herr S., Tataru D., Tzvetkov N.: Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in H 1(T 3). Duke Math. J. 159(2), 329–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ionescu, A.D., Pausader, B.: The energy-critical defocusing NLS on T 3. Duke Math. J. (in press)

  12. Ivanovici O.: On the Schrödinger equation outside strictly convex obstacles. Anal. PDE 3(3), 261–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ivanovici O., Planchon F.: On the energy critical Schrödinger equation in 3D non-trapping domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(5), 1153–1177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Journé J.L., Soffer A., Sogge C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44(5), 573–604 (1991)

    Article  MATH  Google Scholar 

  15. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koch H., Tataru D.: Dispersive estimates for principally normal operators. Commun. Pure Appl. Math. 58, 217–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Planchon F., Vega L.: Bilinear virial identities and applications. Ann. Sci. Éc. Norm. Supér. (4) 42(2), 261–290 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Sjölin P.: Regularity of solutions to Schrödinger equations. Duke Math. J. 55, 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smith H.F., Sogge C.D.: On the L p norm of spectral clusters for compact manifolds with boundary. Acta Math. 198, 107–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strichartz R.: Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taylor M.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics, vol. 100. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  23. Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math Soc 102, 874–878 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hart F. Smith.

Additional information

The authors were supported by National Science Foundation grants DMS-0801211, DMS-0654415, and DMS-0555162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, M.D., Smith, H.F. & Sogge, C.D. Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary. Math. Ann. 354, 1397–1430 (2012). https://doi.org/10.1007/s00208-011-0772-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0772-y

Mathematics Subject Classification (2000)

Navigation