Skip to main content
Log in

Spectral distribution and L2-isoperimetric profile of Laplace operators on groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a formula relating the L 2-isoperimetric profile to the spectral distribution of a Laplace operator on a finitely generated group Γ. We prove the asymptotic stability of the spectral distribution under changes of measures with finite second moment. As a consequence, we can apply techniques from geometric group theory to estimate the spectral distribution of the Laplace operator in terms of the growth and the Følner’s function of the group. This leads to upper bounds on spectral distributions of some non-solvable amenable groups and to sharp estimates of the spectral distributions of some solvable groups with exponential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartholdi L., Woess W.: Spectral computations on lamplighter groups and Diestel-Leader graphs. J. Fourier Anal. Appl. 11(2), 175–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendikov, A., Pittet, C., Sauer, R.: QI-invariance of the spectral distribution of Laplace operators and the return probability of random walks on groups. Preprint

  3. Bendikov A., Coulhon T., Saloff-Coste L.: Ultracontractivity and embedding into L. Math. Ann. 337(4), 817–853 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bingham N.H., Goldie C.M., Teugels J.L.: Regular Variation. Encyclopedia of Mathematics and Its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  5. Brown K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982)

    Google Scholar 

  6. Varopoulos N.Th., Saloff-Coste L., Coulhon T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  7. Coulhon, T.: Heat Kernel and Isoperimetry on Non-Compact Riemannian Manifolds (Paris, 2002). Contemporary Mathematics, vol. 338, pp. 65–99. American Mathematical Society, Providence (2003)

  8. Coulhon T., Saloff-Coste L.: Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana 9(2), 293–314 (1993) (French)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coulhon T., Saloff-Coste L.: Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana 11(3), 687–726 (1995) (French)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coulhon T., Grigor’yan A., Pittet C.: A geometric approach to on-diagonal heat kernel lower bounds on groups. Ann. Inst. Fourier (Grenoble) 51(6), 1763–1827 (2001) (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coulhon T., Grigor’yan A.: On-diagonal lower bounds for heat kernels and Markov chains. Duke Math. J. 89(1), 133–199 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dicks W., Schick T.: The spectral measure of certain elements of the complex group ring of a wreath product. Geom. Dedicata 93, 121–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dodziuk J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Efremov, D.V., Shubin, M.A.: Spectrum distribution function and variational principle for auto- morphic operators on hyperbolic space. Séminaire sur les Équations aux Dérivées Partielles, 1988–1989, É cole Polytech., Palaiseau (1989)

  15. Erschler A.: Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks. Probab. Theory Relat. Fields 136(4), 560–586 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erschler A.: Piecewise automatic groups. Duke Math. J. 134(3), 591–613 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Følner E.: On groups with full Banach mean value. Math. Scand. 3, 243–254 (1955)

    MathSciNet  Google Scholar 

  18. Gretete D.: Stabilité du comportement des marches aléatoires sur un groupe localement compact. Ann. Inst. Henri Poincaré Probab. Stat. 44(1), 129–142 (2008) (French, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grigorchuk R.I., Linnell P., Schick T.,  Zuk A.: On a question of Atiyah. C. R. Acad. Sci. Paris Sér. I Math. 331(9), 663–668 (2000) (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gromov M.: Asymptotic Invariants of Infinite Groups. Geometric Group Theory, vol. 2 (Sussex, 1991). London Mathematical Society Lecture Note Series, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  21. Gromov M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gromov M.: Entropy and isoperimetry for linear and non-linear group actions. Groups Geom Dyn 1(4), 499–593 (2008)

    Article  MathSciNet  Google Scholar 

  23. Gromov M., Shubin M.: von Neumann spectra near zero. Geom. Funct. Anal. 1(4), 375–404 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaĭmanovich V.A., Vershik A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaĭmanovic˘, V.A.: The spectral measure of transition operator and harmonic functions connected with random walks on discrete groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 97, 102–109, 228–229, 236 (1980) (Russian, with English summary). Problems of the theory of probability distributions, VI

  26. Kesten H.: Full Banach mean values on countable groups. Math. Scand. 7, 146–156 (1959)

    MathSciNet  MATH  Google Scholar 

  27. Lück W.: L2-Invariants: Theory and Applications to Geometry and K-Theory. Springer, Berlin (2002)

    Google Scholar 

  28. Mohar B., Woess W.: A survey on spectra of infinite graphs. Bull. Lond. Math. Soc. 21(3), 209–234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller P., Stollmann P.: Spectral asymptotics of the Laplacian on supercritical bond-percolation graphs. J. Funct. Anal. 252(1), 233–246 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oguni, S.-I.: Spectral density functions of general modules over finite von Neumann algebras and their applications. Preprint

  31. Pittet C.: The isoperimetric profile of homogeneous Riemannian manifolds. J. Differ. Geom. 54(2), 255–302 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Pittet C., Saloff-Coste L.: Amenable Groups, Isoperimetric Profiles and Random Walks. Geometric Group Theory Down Under (Canberra, 1996), pp. 293–316. de Gruyter, Berlin (1999)

    Google Scholar 

  33. Pittet C., Saloff-Coste L.: On random walks on wreath products. Ann. Probab. 30(2), 948–977 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pittet C., Saloff-Coste L.: Random walks on finite rank solvable groups. J. Eur. Math. Soc. (JEMS) 5(4), 313–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pittet C., Saloff-Coste L.: On the stability of the behavior of random walks on groups. J. Geom. Anal. 10(4), 713–737 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Riesz F., Sz.-Nagy B.: Leçons d’Analyse Fonctionnelle. Gauthier-Villars, Paris (1972)

    Google Scholar 

  37. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original; Princeton Paperbacks

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Sauer.

Additional information

To the memory of Andrzej Hulanicki.

A. Bendikov was supported by the University of Aix-Marseille I as an invited Professor and by the Polish Government Scientific Research Fund, Grant NN201371736. Ch. Pittet was supported by the CNRS and the Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth Framework Program under contract number MTKD-CT-2004-013389 with the University of Wroclaw. A. Bendikov and Ch. Pittet are grateful to Prof. E. Damek who managed the ToK contract, and to Prof. A. Grigor’yan for an invitation at the University of Bielefeld. They are also grateful to the Erwin Schrödinger Institute for several invitations. R. Sauer was supported by DFG Grant SA 1661/1-2. All authors are grateful for the financial support from Prof. W. Lück’s Leibniz award for a meeting at the WWU Münster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendikov, A., Pittet, C. & Sauer, R. Spectral distribution and L2-isoperimetric profile of Laplace operators on groups. Math. Ann. 354, 43–72 (2012). https://doi.org/10.1007/s00208-011-0724-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0724-6

Mathematics Subject Classification (2000)

Navigation