Skip to main content
Log in

Monotonicity of the matrix geometric mean

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

An attractive candidate for the geometric mean of m positive definite matrices A 1, . . . , A m is their Riemannian barycentre G. One of its important operator theoretic properties, monotonicity in the m arguments, has been established recently by Lawson and Lim. We give an elementary proof of this property using standard matrix analysis and some counting arguments. We derive some new inequalities for G. One of these says that, for any unitarily invariant norm, ||| G ||| is not bigger than the geometric mean of |||A 1|||, . . . , |||A m |||.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando T., Li C.K., Mathias R.: Geometric means. Linear Algebra Appl. 385, 305–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  3. Bhatia R.: Matrix Analysis. Springer, Berlin (1997)

    Book  Google Scholar 

  4. Bhatia R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    Google Scholar 

  5. Bhatia R., Holbrook J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhatia R., Holbrook J.: Noncommutative geometric means. Math. Intell. 28, 32–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bini D., Meini B., Poloni F.: An effective matrix geometric mean satisfying the Ando–Li–Mathias properties. Math. Comp. 79, 437–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jost, J.: Nonpositive curvature: geometric and analytic aspects. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1997)

  9. Karcher H.: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kubo F., Ando T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawson, J., Lim, Y.: Monotonic properties of the least squares mean. Math. Ann. doi:10.1007/s00208-010-0603-6

  12. Li C.-K., Mathias R.: Generalizations of Ky Fan’s dominance theorem. SIAM J. Matrix Anal. Appl. 19, 99–106 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moakher M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pusz W., Woronowicz S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steele J.M.: The Cauchy–Schwarz Master Class. Cambridge University Press, London (2004)

    Book  MATH  Google Scholar 

  16. Sturm K.-T. et al.: Probability measures on metric spaces of nonpositive curvature. In: Auscher, P. (eds) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Contemporary Mathematics, vol. 338, American Mathematical Society, USA (2003)

    Google Scholar 

  17. Yamazaki, T.: An elementary proof of arithmetic–geometric mean inequality of the weighted Riemannian mean of positive definite matrices (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Bhatia.

Additional information

Dedicated to M.S. Narasimhan and C.S. Seshadri on the occasion of their 80th birthdays.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, R., Karandikar, R.L. Monotonicity of the matrix geometric mean. Math. Ann. 353, 1453–1467 (2012). https://doi.org/10.1007/s00208-011-0721-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0721-9

Mathematics Subject Classification (2000)

Navigation