Skip to main content
Log in

Hall algebras of curves, commuting varieties and Langlands duality

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct an isomorphism between the (universal) spherical Hall algebra of a smooth projective curve of genus g and a convolution algebra in the (equivariant) K-theory of the genus g commuting varieties \({C_{\mathfrak{gl}_r}=\big\{ (x_i, y_i) \in \mathfrak{gl}_r^{2g}\;;\; \sum_{i=1}^g [x_i,y_i]=0\big\}}\) . We can view this isomorphism as a version of the geometric Langlands duality in the formal neighborhood of the trivial local system, for the group GL r . We extend this to all reductive groups and we compute the image, under our correspondence, of the skyscraper sheaf supported on the trivial local system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I.. Preprint. math.AG/0505148 (2005)

  2. Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhaüser, Boston (1996)

    Google Scholar 

  3. Deligne, P.: Constantes des équations fonctionelles des fonctions L. In: Lecture Notes in Mathematics, vol. 349, pp. 501–597. Springer, Berlin (1973)

  4. Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 18, 1015–1034 (2003)

    Article  MathSciNet  Google Scholar 

  5. Feigin, B., Odesskii, A.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in Quantum Groups and Finite-type Invariants. Amer. Math. Soc. Transl. Ser. 2, vol. 185, pp. 65–84 (1998)

  6. Feigin, B., Tsymbaliuk, A.: Heisenberg action in the equivariant K-theory of Hilbert schemes via Shuffle Algebra. Preprint. arXiv:0904.1679 (2009)

  7. Fratila, D.: Cusp eigenforms and the Hall algebra of an elliptic curve, preprint

  8. Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry, II, pp. 387–533. Springer, Berlin (2007)

  9. Gaitsgory, D.: Automorphic sheaves and Eisenstein series. Thesis, Tel-Aviv University (1997)

  10. Grojnowski I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Harder G.: Chevalley groups over function fields and automorphic forms. Ann. Math. 100(2), 249–306 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kapranov M.: Eisenstein series and quantum affine algebras Algebraic geometry, 7. J. Math. Sci. (New York) 84(5), 1311–1360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Langlands, R.P.: Euler products. In: A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. Yale Mathematical Monographs, vol. 1. Yale University Press, New Haven (1971)

  14. Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS Regional Conference Series in Mathematics, vol. 99 (2003)

  15. Laumon, G.: Faisceaux automorphes asociées aux séries d’Eisenstein. Automorphic Forms, Shimura Varieties, and L-Functions, vol. I (Ann Arbor, MI, 1988), pp. 227–281 (1988)

  16. Laumon, G.: La transformation de Fourier géométrique et ses applications. In: Proceedings of the International Congress of Mathematicians, vols. I, II (Kyoto, 1990), pp. 437–445. Math. Soc. Japan, Tokyo (1991)

  17. Lusztig G.: Introduction to Quantum Groups. Birkhaüser, Boston (1992)

    Google Scholar 

  18. Milne, J.S.: Abelian varieties. In: Arithmetic Geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986)

  19. Ringel C.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosso M.: Quantum groups and quantum shuffles. Invent. Math. 133(2), 399–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schiffmann, O.: Lectures on Hall algebras I, II. Preprint. arXiv:0611617. Comptes-Rendus de l’école doctorale de Grenoble (2006, to appear)

  22. Schiffmann, O.: Spherical Hall algebras of curves and Harder-Narasimhan stratas. Preprint. arXiv:1002.0987 (2010)

    Google Scholar 

  23. Schiffmann, O.: On the Hall algebra of an elliptic curve, II. Preprint arXiv:math/0508553 (2005)

  24. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials. Preprint. arXiv:0802.4001. Compositio (2008, to appear)

  25. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of \({\mathbb{A}^2}\) . Preprint. arXiv:0905.2558 (2009)

  26. Thomason R.W.: Les K-groupes d’un schéma éclaté et une formule d’intersection excédentaire. Invent. Math. 112, 195–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Varagnolo M., Vasserot E.: On the K-theory of the cyclic quiver variety. Int. Math. Res. Not. 18, 1005–1028 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Schiffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffmann, O., Vasserot, E. Hall algebras of curves, commuting varieties and Langlands duality. Math. Ann. 353, 1399–1451 (2012). https://doi.org/10.1007/s00208-011-0720-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0720-x

Keywords

Navigation