Cusps of the Kähler moduli space and stability conditions on K3 surfaces

Abstract

Ma (Int J Math 20(6):727–750, 2009) established a bijection between Fourier–Mukai partners of a K3 surface and cusps of the Kähler moduli space. The Kähler moduli space can be described as a quotient of Bridgeland’s stability manifold. We study the relation between stability conditions σ near to a cusp and the associated Fourier–Mukai partner Y in the following ways. (1) We compare the heart of σ to the heart of coherent sheaves on Y. (2) We construct Y as moduli space of σ-stable objects. An appendix is devoted to the group of auto-equivalences of \({\mathcal{D}^b(X)}\) which respect the component \({Stab^{\dagger}(X)}\) of the stability manifold.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Baily W.L., Borel A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84(2), 442–528 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Beauville A., Bourguignon J.-P., Demazure M.: Géométrie des surfaces K3: modules et périodes. Société Mathématique de France, Paris (1985)

    Google Scholar 

  3. 3

    Borel, A., Ji, L.: Compactifications of symmetric and locally symmetric spaces. In: Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (2006)

  4. 4

    Bridgeland T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5

    Bridgeland T.: Stability conditions on K3 surfaces. Duke Math. J. 141(2), 241–291 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6

    Bridgeland, T.: Spaces of stability conditions. In: Algebraic geometry—Seattle 2005. Proc. Sympos. Pure Math., Part 1, vol. 80, pp. 1–21. Amer Math. Soc., Providence (2009)

  7. 7

    Dolgachev I.V.: Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Grothendieck, A.: Théorie des intersections et théorème de Riemann-Roch (SGA6). In: Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)

  9. 9

    Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  10. 10

    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. In: Pure and Applied Mathematics, vol. 80. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1978)

  11. 11

    Hosono S., Lian B.H., Oguiso K., Yau S.-T.: Auto equivalences of derived category of a K3 surface and monodromy transformations. J. Algebraic Geom. 13(3), 513–545 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12

    Huybrechts, D.: Fourier–Mukai transforms in algebraic geometry. In: Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, Oxford (2006)

  13. 13

    Huybrechts D.: Derived and abelian equivalence of K3 surfaces. J. Algebraic Geom. 17(2), 375–400 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Huybrechts D., Macrì E., Stellari P.: Derived equivalences of K3 surfaces and orientation. Duke Math. J. 149(3), 461– (2009)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Huybrechts D., Stellari P.: Equivalences of twisted K3 surfaces. Math. Ann. 332(4), 901–936 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Ji L., MacPherson R.: Geometry of compactifications of locally symmetric spaces. Ann. Inst. Fourier (Grenoble) 52(2), 457–559 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17

    Lieblich M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18

    Looijenga E.: Compactifications defined by arrangements. II. Locally symmetric varieties of type IV. Duke Math. J. 119(3), 527–588 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Ma S.: Fourier-Mukai partners of a K3 surface and the cusps of its Kahler moduli. Int. J. Math. 20(6), 727–750 (2009)

    MATH  Article  Google Scholar 

  20. 20

    Ma S.: On the 0-dimensional cusps of the K ähler moduli of a K3 surface. Math. Ann. 348(1), 57–80 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21

    Mukai, S.: On the moduli space of bundles on K3 surfaces. I. Tata Inst. Fund. Res. Stud. Math., vol. 11. Tata Inst. Fund. Res., Bombay (1987)

  22. 22

    Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics No. 5. Tata Institute of Fundamental Research, Bombay (1970)

  23. 23

    Ploog, D.: Groups of autoequivalences of derived categories of smooth projective varieties. PhD thesis, FU Berlin (2005)

  24. 24

    Toda Y.: Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math. 217(6), 2736–2781 (2008)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heinrich Hartmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartmann, H. Cusps of the Kähler moduli space and stability conditions on K3 surfaces. Math. Ann. 354, 1–42 (2012). https://doi.org/10.1007/s00208-011-0719-3

Download citation

Mathematics Subject Classification (2000)

  • 14F05
  • 14J28
  • 18E30