Skip to main content
Log in

Global parametrices and dispersive estimates for variable coefficient wave equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this article we consider variable coefficient time dependent wave equations in \({\mathbb {R} \times \mathbb {R}^n}\) . Using phase space methods we construct outgoing parametrices and prove Strichartz type estimates globally in time. This is done in the context of C 2 metrics which satisfy a weak asymptotic flatness condition at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac S.: On the Morawetz–Keel–Smith–Sogge inequality for the wave equation on a curved background. Publ. Res. Inst. Math. Sci. 42(3), 705–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouclet J.-M., Tzvetkov N.: On global Strichartz estimates for non-trapping metrics. J. Funct. Anal. 254(6), 1661–1682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner P.: On L p L p estimates for the wave-equation. Math. Z. 145(3), 251–254 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin P., Saut J.-C.: Effets régularisants locaux pour des équations dispersives générales. C. R. Acad. Sci. Paris Sér. I Math. 304(14), 407–410 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Craig W., Kappeler T., Strauss W.: Microlocal dispersive smoothing for the Schrödinger equation. Commun. Pure Appl. Math. 48(8), 769–860 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delort J.-M.: F.B.I. transformation. Second microlocalization and semilinear caustics. Springer, Berlin (1992)

    MATH  Google Scholar 

  7. Doi S.: Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow. Math. Ann. 318(2), 355–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fefferman C.L.: The uncertainty principle. Bull. Am. Math. Soc. (N.S.) 9(2), 129–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Folland G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  10. Ginibre J., Velo G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 144(1), 163–188 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassell A., Tao T., Wunsch J.: A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds. Commun. Partial Differ. Equ. 30(1–3), 157–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keel M., Smith H.F., Sogge C.D.: Almost global existence for some semilinear wave equations. J. Anal. Math. 87, 265–279 (2002) (Dedicated to the memory of Thomas H. Wolff)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kenig C.E., Ponce G., Vega L.: On the Zakharov and Zakharov–Schulman systems. J. Funct. Anal. 127(1), 204–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch H., Tataru D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lax, P.D., Phillips, R.S.: Scattering Theory. Pure and Applied Mathematics, vol. 26, 2nd edition. Academic Press Inc., Boston (1989). (With appendices by C.S. Morawetz and Georg Schmidt)

  17. Marzuola J., Metcalfe J., Tataru D.: Strichartz estimates and local smoothing estimates for asympototically flat Schrödinger equations. J. Funct. Anal. 255(6), 1497–1553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metcalfe, J., Sogge, C.D.: Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38(1), 188–209 (2006, electronic)

    Google Scholar 

  19. Mockenhaupt G., Seeger A., Sogge C.D.: Local smoothing of Fourier integral operators and Carleson–Sjölin estimates. J. Am. Math. Soc. 6(1), 65–130 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Morawetz C.S.: Time decay for the nonlinear Klein–Gordon equations. Proc. Roy. Soc. Ser. A 306, 291–296 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robbiano, L., Zuily, C.: Strichartz estimates for Schrödinger equations with variable coefficients. Mém. Soc. Math. Fr. (N.S.), (101–102):vi+208 (2005)

  22. Rodnianski, I., Tao, T.: Longtime decay estimates for the Schrödinger equation on manifolds. In: Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., vol. 163, pp. 223–253. Princeton University Press, Princeton (2007)

  23. Per S.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sjöstrand, J.: Singularités analytiques microlocales. In: Astérisque, 95, pp. 1–166. Soc. Math. France, Paris (1982)

  25. Smith H.F.: A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier (Grenoble) 48(3), 797–835 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith H.F., Sogge C.D.: On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett. 1(6), 729–737 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Smith H.F., Sogge C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian . Commun. Partial Differ. Equ. 25(11–12), 2171–2183 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith H.F., Tataru D.: Sharp counterexamples for Strichartz estimates for low regularity metrics. Math. Res. Lett. 9(2–3), 199–204 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strauss W.A.: Dispersal of waves vanishing on the boundary of an exterior domain. Commun. Pure Appl. Math. 28, 265–278 (1975)

    Article  MATH  Google Scholar 

  31. Strichartz R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tataru D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122(2), 349–376 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Tataru D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Am. J. Math. 123(3), 385–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tataru D.: On the Fefferman–Phong inequality and related problems. Commun. Partial Differ. Equ. 27(11–12), 2101–2138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Am. Math. Soc., 15(2), 419–442 (2002, electronic)

    Google Scholar 

  36. Tataru, D.: Phase space transforms and microlocal analysis. In: Phase space analysis of partial differential equations. Vol. II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, pp. 505–524. Scuola Norm. Sup., Pisa (2004)

  37. Tataru D.: Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Am. J. Math. 130(3), 571–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Taylor, M.E.: Tools for PDE, Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence. Pseudodifferential operators, paradifferential operators, and layer potentials (2000)

  39. Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Metcalfe.

Additional information

The work of the first author was supported in part by an NSF postdoctoral fellowship and NSF grant DMS0800678, and that of the second author by NSF grants DMS0354539 and DMS0301122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metcalfe, J., Tataru, D. Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353, 1183–1237 (2012). https://doi.org/10.1007/s00208-011-0714-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0714-8

Keywords

Navigation