Skip to main content

Advertisement

Log in

Quantitative uniqueness for elliptic equations with singular lower order terms

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second-order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Unicité et convexité dans les problèmes différentiels. Séminaire de Mathématiques Supérieures (13) (1965) Les Presses de l’Université de Montréal, Montréal (1966)

  2. Alessandrini G., Rondi L., Rosset E., Vessella S.: The stability of the Cauchy problem for elliptic equations. Inverse Problems 25(12), 1–47 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brummelhuis R.: Three-spheres theorem for second order elliptic equations. J. Anal. Math. 65, 179–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garofalo N., Lin F.-H.: Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garofalo N., Lin F.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerasimov J.K.: The three spheres theorem for a certain class of elliptic equations of high order and a refinement of this theorem for a linear elliptic equation of the second order. Mat. Sb. (N.S.) 71(113), 563–585 (1966) (Russian)

    MathSciNet  Google Scholar 

  7. Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and quasilinear equations of elliptic type, 2nd edn. revised. Izdat. Nauka, Moscow (1973) (Russian)

  8. Landis E.M.: A three-spheres theorem. Dokl. Akad. Nauk SSSR 148, 277–279 (1963) (Russian)

    MathSciNet  Google Scholar 

  9. Lin F.-H.: A uniqueness theorem for parabolic equations. Commun. Pure Appl. Math. 43(1), 127–136 (1990)

    Article  MATH  Google Scholar 

  10. Koch H., Tataru D.: Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54(3), 339–360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kukavica I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91(2), 225–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malinnikova E.: Propagation of smallness for solutions of generalized Cauchy–Riemann systems. Proc. Edinb. Math. Soc. (2) 47(1), 191–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nadirashvili, N.: Estimation of the solutions of elliptic equations with analytic coefficients which are bounded on some set. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2), 42–46 (1979) (Russian)

  14. Nadirashvili N.: Uniqueness and stability of extension of solution of an elliptic equation from a set to a domain. Mat. Notes 40(2), 623–627 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Regbaoui R.: Unique continuation from sets of positive measure. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999). Progress in Nonlinear Differential Equation and Application, vol. 46, pp. 179–190. Birkhäuser, Boston (2001)

  16. Stein E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)

    Google Scholar 

  17. Su B.: Doubling property of elliptic equations. Commun. Pure Appl. Anal. 7(1), 143–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vessella S.: A continuous dependence result in the analytic continuation problem. Forum Math. 11(6), 695–703 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vessella S.: Quantitative continuation from a measurable set of solutions of elliptic equations. Proc. R. Soc. Edinb. 130(4), 909–923 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Malinnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinnikova, E., Vessella, S. Quantitative uniqueness for elliptic equations with singular lower order terms. Math. Ann. 353, 1157–1181 (2012). https://doi.org/10.1007/s00208-011-0712-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0712-x

Mathematics Subject Classification (2000)

Navigation