Skip to main content
Log in

Monotonic properties of the least squares mean

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We settle an open problem of several years standing by showing that the least squares mean for positive definite matrices is monotone for the usual (Loewner) order. Indeed we show this is a special case of its appropriate generalization to partially ordered complete metric spaces of nonpositive curvature. Our techniques extend to establish other basic properties of the least squares mean such as continuity and joint concavity. Moreover, we introduce a weighted least squares mean and derive our results in this more general setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn E., Kim S., Lim Y.: An extended Lie–Trotter formula and its applications. Linear Algebra Appl. 427, 190–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ando T., Li C.K., Mathias R.: Geometric means. Linear Algebra Appl. 385, 305–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballman W.: Lectures on Spaces of Nonpositive Curvature. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  4. Barbaresco, F.: Innovative tools for radar signal processing based on Cartan’s geometry of symmetric positive definite matrices and information geometry. In: Proceedings of the IEEE International Radar Conference (Rome, Italy 2008)

  5. Berger M.: A Panoramic View of Riemannlan Geometry. Springer, Berlin (2003)

    Book  Google Scholar 

  6. Bhatia, R.: Positive definite matrices. In: Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2007)

  7. Bhatia R., Holbrook J.: Noncommutative geometric means. Math. Intell. 28, 32–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhatia R., Holbrook J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413, 594–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bini D., Meini B., Poloni F.: An effective matrix geometric mean satisfying the Ando–Li–Mathias properties. Math. Comp. 79, 437–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bridson M., Haefliger A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

    MATH  Google Scholar 

  11. Es-Sahib A., Heinich H.: Barycentre canonique pour un espace métrique à courbure négative. Séminaire de probabilités (Strasbourg) 33, 355–370 (1999)

    MathSciNet  Google Scholar 

  12. Fletcher P.D., Joshi S.: Riemannian geometry for the statistical analysis of difusion tensor data. Signal Process. 87, 250–262 (2007)

    Article  MATH  Google Scholar 

  13. Heinz E.: Beitäge zur Störungstheorie der Spectralzerlegung. Math. Ann. 123, 415–438 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jost, J.: Nonpositive curvatures: geometric and analytic aspects. In: Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1997)

  15. Karcher H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kubo F., Ando T.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lang, S.: Fundamentals of differential geometry. In: Graduate Texts in Math Springer, Berlin (1999)

  18. Lawson J.D., Lim Y.: The geometric mean, matrices, metrics, and more. Am. Math. Monthly 108, 797–812 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawson J.D., Lim Y.: A general framework for extending means to higher orders. Colloq. Math. 113, 191–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lawson, J.D., Lim, Y.: Monotonic properties of the least squared mean (preprint). arXiv:1007.4792v1

  21. Lawson, J.D., Lee, H., Lim, Y.: Weighted geometric means. Forum. Math. (to appear)

  22. Löwner K.: Über monotone Matrixfunktionen. Math. Z. 38, 177–216 (1934)

    Article  MathSciNet  Google Scholar 

  23. Moakher M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pennec X., Fillard P., Ayache N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)

    Article  Google Scholar 

  25. Sagae M., Tanabe K.: Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices. Linear Multilinear Algebras 37, 279–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. In: Auscher, P. et al. (eds.) Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Contemp. Math. vol. 338. Amer. Math. Soc. (AMS), Providence (2003)

  27. Yamazaki, T.: On properties of geometric mean of n-operators via Riemannian metric (preprint)

  28. Zerai M., Moakher M.: Riemannian curvature-driven flows for tensor-valued data. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision, pp. 592–602. Springer, Berlin (2007)

    Chapter  Google Scholar 

  29. Zhan X.: Open problems in matrix theory. In: Ji, L., Liu, K., Yang, L., Yau, S.-T. (eds) Proceedings of the 4th International Congress of Chinese Mathematicians, vol. I, pp. 367–382. Higher Education Press, Beijing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmie Lawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, J., Lim, Y. Monotonic properties of the least squares mean. Math. Ann. 351, 267–279 (2011). https://doi.org/10.1007/s00208-010-0603-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0603-6

Mathematics Subject Classification (2000)

Navigation