Skip to main content
Log in

Lp estimates for non-smooth bilinear Littlewood–Paley square functions on \({\mathbb{R}}\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this work, we study some non-smooth bilinear analogues of linear Littlewood–Paley square functions on the real line. We prove boundedness-properties in Lebesgue spaces for them. Let us consider the functions \({\phi_{n}}\) satisfying \({\widehat{\phi_n}(\xi)={\bf 1}_{[n,n+1]}(\xi)}\) and define the bilinear operator \({S_n(f,g)(x):=\int f(x+y)g(x-y) \phi_n(y) dy}\) . These bilinear operators are closely related to the bilinear Hilbert transforms. Then for exponents \({p,q,r'\in[2,\infty)}\) satisfying \({\frac{1}{p}+\frac{1}{q}=\frac{1}{r}}\) , we prove that

$$\left\| \left( \sum_{n\in \mathbb{Z}}\left|S_n(f,g) \right|^2 \right)^{1/2}\right\|_{L^{r}(\mathbb{R})}\lesssim \|f\|_{L^p(\mathbb{R})}\|g\|_{L^q(\mathbb{R})}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilyk D., Grafakos L.: Distributional estimates for the bilinear Hilbert. J. Geom. Anal. 16(4), 563–584 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bilyk, D., Grafakos, L.: A new way of looking at distributional estimates; applications for the bilinear Hilbert transform. In: Proc. 7th Int. Conf. on Harmonic Analysis and Partial Differential Equations [El Escorial, 2004]. Collectanea Mathematica, pp. 141–169 (2006)

  3. Carleson, L.: On the Littlewood–Paley Theorem. Inst. Mittag-Leffler, Report (1967)

  4. Coifman R.R., Meyer Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman R.R., Meyer Y.: Ondelettes et opérateurs III: Opérateurs multilineaires. Hermann, Paris (1991)

    MATH  Google Scholar 

  6. Cowling M., Tao T.: Some light on Littlewood–Paley theory. Math. Ann. 321, 885–888 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diestel G.: Some remarks on bilinear Littlewood–Paley Theory. J. Math. Anal. Appl. 307, 102–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbert J., Nahmod A.: Bilinear operators with non smooth symbols: part 1. J. Four. Anal. Appl. 6(5), 437–469 (2000)

    Google Scholar 

  9. Gilbert J., Nahmod A.: L p-boundedness for time–frequency Paraproducts: part 2. J. Four. Anal. Appl. 8(2), 109–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, USA (2004)

  11. Grafakos L., Kalton N.: Some remarks on multilinear maps and interpolation. Math. Ann. 319(1), 151–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grafakos L., Martell J.M.: Extrapolation of weighted norm inequalities for multivariable operators and applications. J. Geom. Anal. 14(1), 19–46 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Grafakos L., Tao T.: Multilinear interpolation between adjoint operators. J. Funct. Anal. 199(2), 379–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Journé J.L.: Calderón–Zygmund operators on product spaces. Rev. Mat. Iber. 1, 55–91 (1985)

    MATH  Google Scholar 

  15. Khintchine A.: Über dyadische Brüche. Math. Zeit. 18, 109–116 (1923)

    Article  MathSciNet  Google Scholar 

  16. Lacey M.: On bilinear Littlewood–Paley square functions. Publ. Mat. 40(2), 387–396 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Lacey M.: The bilinear maximal functions map into L p for 2/3 < p ≤ 1. Ann. Math. 151, 35–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lacey, M.: Issues related to Rubio de Francia’s Littlewood–Paley Inequality. In: NYJM Monographs, vol. 2 (2007)

  19. Lacey M., Thiele C.: L p estimates on the bilinear Hilbert transform. Proc. Natl. Acad. Sci. USA 94, 33–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lacey M., Thiele C.: L p estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann. Math. 146, 693–724 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lacey M., Thiele C.: On the Calderón conjectures for the bilinear Hilbert transform. Proc. Natl. Acad. Sci. USA 95, 4828–4830 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lacey M., Thiele C.: On Calderón’s conjecture. Ann. Math. 149, 475–496 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Littlewood J.E., Paley R.E.A.C.: Theorems on Fourier series and power series (I). J. Lond. Math. Soc. 6, 230–233 (1931)

    Article  Google Scholar 

  24. Littlewood J.E., Paley R.E.A.C.: Theorems on Fourier series and power series (II). Proc. Lond. Math. Soc. 42, 52–89 (1936)

    Article  Google Scholar 

  25. Littlewood J.E., Paley R.E.A.C.: Theorems on Fourier series and power series (III). Proc. Lond. Math. Soc. 43, 105–126 (1937)

    Article  MATH  Google Scholar 

  26. Muscalu C., Tao T., Thiele C.: Multi-linear operators given by singular multipliers. J. Am. Math. Soc. 15, 469–496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Muscalu C., Tao T., Thiele C.: Uniforms estimates on multi-linear operators with modulation symmetry. J. Anal. Math. 88, 255–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muscalu C., Tao T., Thiele C.: L p estimates for the biest I: The Walsh case. Math. Ann. 329, 401–426 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Muscalu C., Tao T., Thiele C.: L p estimates for the biest II: The Fourier case. Math. Ann. 329, 427–461 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Rubio de Francia J.L.: A Littlewood–Paley inequality for arbitrary intervals. Rev. Mat. Iber. 1(2), 1–14 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Stein E.M.: On the functions of Littlewood–Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)

    Article  Google Scholar 

  32. Stein E.M., Weiss G.: An extension of theorem of Marcinkiewicz and some of its applications. J. Math. Mech. 8, 263–284 (1959)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bernicot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernicot, F. Lp estimates for non-smooth bilinear Littlewood–Paley square functions on \({\mathbb{R}}\). Math. Ann. 351, 1–49 (2011). https://doi.org/10.1007/s00208-010-0588-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0588-1

Mathematics Subject Classification (2000)

Navigation