Adapted complex structures and the geodesic flow

Abstract

In this paper, we give a new construction of the adapted complex structure on a neighborhood of the zero section in the tangent bundle of a compact, real-analytic Riemannian manifold. Motivated by the “complexifier” approach of T. Thiemann as well as certain formulas of V. Guillemin and M. Stenzel, we obtain the polarization associated to the adapted complex structure by applying the “imaginary-time geodesic flow” to the vertical polarization. Meanwhile, at the level of functions, we show that every holomorphic function is obtained from a function that is constant along the fibers by “composition with the imaginary-time geodesic flow.” We give several equivalent interpretations of this composition, including a convergent power series in the vector field generating the geodesic flow.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Axelrod S., Della Pietra S., Witten E.: Geometric quantization of Chern–Simons gauge theory. J. Diff. Geom. 33, 787–902 (1991)

    MathSciNet  MATH  Google Scholar 

  2. 2

    Aguilar R.M.: Symplectic reduction and the homogeneous complex Monge-Ampère equation. Ann. Global Anal. Geom. 19(4), 327–353 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Burns D., Hind R.: Symplectic geometry and the uniqueness of Grauert tubes. Geom. Funct. Anal. 11(1), 1–10 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Florentino C., Matias P., Mourão J., Nunes J.P.: Geometric quantization, complex structures and the coherent state transform. J. Func. Anal. 221, 303–322 (2005)

    MATH  Article  Google Scholar 

  5. 5

    Florentino C., Matias P., Mourão J., Nunes J.P.: On the BKS pairing for Kähler quantizations for the cotangent bundle of a Lie group. J. Func. Anal. 234, 180–198 (2006)

    MATH  Article  Google Scholar 

  6. 6

    Grauert H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. (2) 68, 460–472 (1958)

    MathSciNet  Article  Google Scholar 

  7. 7

    Guillemin V., Stenzel M.: Grauert tubes and the homogeneous Monge-Ampère equation. J. Differential Geom. 34(2), 561–570 (1991)

    MathSciNet  MATH  Google Scholar 

  8. 8

    Guillemin V., Stenzel M.: Grauert tubes and the homogeneous Monge-Ampère equation. II. J. Differential Geom. 35(3), 627–641 (1992)

    MathSciNet  MATH  Google Scholar 

  9. 9

    Hall B.C.: The Segal–Bargmann “coherent state” transform for compact Lie groups. J. Func. Anal. 122, 103–151 (1994)

    MATH  Article  Google Scholar 

  10. 10

    Hall B.C.: The inverse Segal-Bargmann transform for compact Lie groups. J. Funct. Anal. 143(1), 98–116 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Hall B.C.: Geometric quantization and the generalized Segal–Bargmann transform for Lie groups of compact type. Commun. Math. Phys. 226, 233–268 (2002)

    MATH  Article  Google Scholar 

  12. 12

    Halverscheid S.: Complexifications of geodesic flows and adapted complex structures. Rep. Math. Phys. 50(3), 329–338 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13

    Hall B.C., Mitchell J.J.: Coherent states on spheres. J. Math. Phys. 43(3), 1211–1236 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14

    Huebschmann J.: Kähler quantization and reduction. J. Reine Angew. Math. 591, 75–109 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Jost, J.: Riemannian Geometry and Geometric Analysis, Universitext, Springer-Verlag, Berlin (1995)

  16. 16

    Kohno, M.: Global Analysis in Linear Differential Equations, Mathematics and its Applications, vol. 471, Kluwer Academic Publishers, Dordrecht (1999)

  17. 17

    Lempert L., Szőke R.: Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4), 689–712 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18

    Szőke R.: Complex structures on tangent bundles of Riemannian manifolds. Math. Ann. 291(3), 409–428 (1991)

    MathSciNet  Article  Google Scholar 

  19. 19

    Szőke R.: Automorphisms of certain Stein manifolds. Math. Z. 219(3), 357–385 (1995)

    MathSciNet  Article  Google Scholar 

  20. 20

    Szőke R.: Involutive structures on the tangent bundle of symmetric spaces. Math. Ann. 319(2), 319–348 (2001)

    MathSciNet  Article  Google Scholar 

  21. 21

    Thiemann T.: Reality conditions inducing transforms for quantum gauge field theory and quantum gravity. Classical Quant Gravity 13, 1383–1403 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Thiemann T.: Gauge field theory coherent states (GCS). I. General properties. Classical Quant Gravity 18(11), 2025–2064 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23

    Thiemann T.: Complexifier coherent states for quantum general relativity. Classical Quant Gravity 23(6), 2063–2117 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Totaro B.: Complexifications of nonnegatively curved manifolds. J. Eur. Math. Soc. (JEMS) 5(1), 69–94 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Whitney H., Bruhat F.: Quelques propriétés fondamentales des ensembles analytiques-réels. Comment. Math. Helv. 33, 132–160 (1959)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William D. Kirwin.

Additional information

Brian C. Hall was supported in part by NSF Grant DMS-0555862. William D. Kirwin would like to thank the University of Hong Kong and the Max Planck Institute for Mathematics in the Sciences for their hospitality during the preparation of this paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hall, B.C., Kirwin, W.D. Adapted complex structures and the geodesic flow. Math. Ann. 350, 455–474 (2011). https://doi.org/10.1007/s00208-010-0564-9

Download citation

Mathematics Subject Classification (2000)

  • 53D25
  • 32D15
  • 32Q15
  • 53D50
  • 81S10