Abstract
We consider actions of reductive complex Lie groups \({G=K^\mathbb{C}}\) on Kähler manifolds X such that the K-action is Hamiltonian and prove then that the closures of the G-orbits are complex-analytic in X. This is used to characterize reductive homogeneous Kähler manifolds in terms of their isotropy subgroups. Moreover we show that such manifolds admit K-moment maps if and only if their isotropy groups are algebraic.
This is a preview of subscription content,
to check access.References
Barth W., Otte M.: Invariante holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 97–112 (1973)
Berteloot F.: Existence d’une structure kählérienne sur les variétés homogènes semi-simples. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 809–812 (1987)
Berteloot F., Oeljeklaus K.: Invariant plurisubharmonic functions and hypersurfaces on semisimple complex Lie groups. Math. Ann. 281(3), 513–530 (1988)
Bierstone E., Milman P.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)
Bishop E.: Conditions for the analyticity of certain sets. Michigan Math. J. 11, 289–304 (1964)
Blanchard A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup. 73(3), 157–202 (1956)
Borel A.: Linear algebraic groups. In: Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer, New York (1991)
Fujiki A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44(3), 225–258 (1978)
Guillemin V., Sternberg S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)
Heinzner P., Loose F.: Reduction of complex Hamiltonian G-spaces. Geom. Funct. Anal. 4(3), 288–297 (1994)
Heinzner P., Migliorini L., Polito M.: Semistable quotients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(2), 233–248 (1998)
Hironaka, H.: Subanalytic sets. In: Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo. pp. 453–493 (1973)
Huckleberry A.T., Wurzbacher T.: Multiplicity-free complex manifolds. Math. Ann. 286(1–3), 261–280 (1990)
Jacobson, N.: Lie algebras. In: Interscience Tracts in Pure and Applied Mathematics, vol. 10. Interscience Publishers (a division of Wiley), New York (1962)
Kollár, J.: Lectures on resolution of singularities. In: Annals of Mathematical Studies, vol. 166, pp. vi + 208. Princeton University Press, Princeton (2007)
Kurdyka K., Raby G.: Densité des ensembles sous-analytiques. Ann. Inst. Fourier (Grenoble) 39(3), 753–771 (1989)
Margulis G.: Free completely discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 272(4), 785–788 (1983)
Margulis G.: Free completely discontinuous groups of affine transformations. Sov. Math. Dokl. 28, 435–439 (1983)
Massmann B.: Equivariant Kähler compactifications of homogeneous manifolds. J. Geom. Anal. 2(6), 555–574 (1992)
Matsushima Y.: Sur les espaces homogènes de Stein des groupes de Lie complexes I. Nagoya Math. J. 16, 205–218 (1960)
Onishchik, A.L.: Complex hulls of compact homogeneous spaces. Dokl. Akad. Nauk SSSR 130, 726–729 (1960) (English trans.: Sov. Math. 1, 88–93 (1960))
Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3, pp. vii + 272. Australian National University, Centre for Mathematical Analysis, Canberra (1983)
Sommese A.J.: Extension theorems for reductive group actions on compact Kaehler manifolds. Math. Ann. 218(2), 107–116 (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Alan T. Huckleberry.
We gratefully acknowledge that this work was partially supported by an NSERC Discovery Grant. We would also like to thank Nicolas Dutertre for valuable discussions on subanalytic geometry.
Rights and permissions
About this article
Cite this article
Gilligan, B., Miebach, C. & Oeljeklaus, K. Homogeneous Kähler and Hamiltonian manifolds. Math. Ann. 349, 889–901 (2011). https://doi.org/10.1007/s00208-010-0546-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-010-0546-y