Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Mathematische Annalen
  3. Article

A Dirichlet unit theorem for Drinfeld modules

  • Open access
  • Published: 19 March 2010
  • volume 348, pages 899–907 (2010)
Download PDF

You have full access to this open access article

Mathematische Annalen Aims and scope Submit manuscript
A Dirichlet unit theorem for Drinfeld modules
Download PDF
  • Lenny Taelman1 
  • 614 Accesses

  • 20 Citations

  • Explore all metrics

Cite this article

Abstract

We show that the module of integral points on a Drinfeld module satisfies an analogue of Dirichlet’s unit theorem, despite its failure to be finitely generated. As a consequence, we obtain a construction of a canonical finitely generated sub-module of the module of integral points. We use the results to give a precise formulation of a conjectural analogue of the class number formula.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Anderson, G.W.: Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p. J. Number Theory 60(1), 165–209 (1996). http://www.ams.org/mathscinet-getitem?mr=1405732

  2. Carlitz, L.: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1(2), 137–168 (1935). http://www.ams.org/mathscinet-getitem?mr=1545872

  3. Drinfeld, V.G.: Elliptic modules. Mat. Sb. (N.S.) 94(136), 594–627, 656 (1974). http://www.ams.org/mathscinet-getitem?mr=0384707

  4. Goss, D.: L-series of t-motives and Drinfeld modules. In: The Arithmetic of Function Fields, vol. 2, pp. 313–402. Ohio State University Mathematical Research Institute Publications, Columbus (1991), de Gruyter, Berlin (1992). http://www.ams.org/mathscinet-getitem?mr=1196527

  5. Igusa, J.-I.: An Introduction to the Theory of Local Zeta Functions. AMS/IP Studies in Advanced Mathematics, vol. 14. American Mathematical Society, Providence (2000). http://www.ams.org/mathscinet-getitem?mr=1743467

  6. Lafforgue, V.: Valeurs spéciales des fonctions L en caractéristique p. J. Number Theory 129(10), 2600–2634 (2009). http://www.ams.org/mathscinet-getitem?mr=2541033

  7. Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. Clay Mathematics Monographs, vol. 2. American Mathematical Society, Providence (2006). http://www.ams.org/mathscinet-getitem?mr=2242284

  8. Poonen, B.: Local height functions and the Mordell–Weil theorem for Drinfeld modules. Compos. Math. 97(3), 349–368 (1995). http://www.ams.org/mathscinet-getitem?mr=1353279

    Google Scholar 

  9. Serre, J.-P.: Corps locaux. Publications de l’Institut de Mathématique de l’Université de Nancago, VIII. Actualités Sci. Indust., No. 1296. Hermann, Paris (1962). http://www.ams.org/mathscinet-getitem?mr=0150130

  10. Taelman, L.: Special L-values of t-motives: a conjecture. Int. Math. Res. Not. IMRN 16, 2957–2977 (2009). http://www.ams.org/mathscinet-getitem?mr=2533793

  11. Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Progress in Mathematics, vol. 47. Birkhäuser Boston Inc., Boston (1984). http://www.ams.org/mathscinet-getitem?mr=782485

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Mathematisch Instituut, P.O. Box 9512, 2300 RA, Leiden, The Netherlands

    Lenny Taelman

Authors
  1. Lenny Taelman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lenny Taelman.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Taelman, L. A Dirichlet unit theorem for Drinfeld modules. Math. Ann. 348, 899–907 (2010). https://doi.org/10.1007/s00208-010-0506-6

Download citation

  • Received: 19 November 2009

  • Revised: 22 February 2010

  • Published: 19 March 2010

  • Issue Date: December 2010

  • DOI: https://doi.org/10.1007/s00208-010-0506-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2000)

  • 11G09
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature