Skip to main content
Log in

Oscillatory integral decay, sublevel set growth, and the Newton polyhedron

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Extending some resolution of singularities methods (Greenblatt in J Funct Anal 255(8):1957–1994, 2008) of the author, a generalization of a well-known theorem of Varchenko (Funct Anal Appl 18(3):175–196, 1976) relating decay of oscillatory integrals to the Newton polyhedron is proven. They are derived from analogous results for sublevel integrals, proven here. Varchenko’s theorem requires a certain nondegeneracy condition on the faces of the Newton polyhedron on the phase. In this paper, it is shown that the estimates of Varchenko’s theorem also hold for a significant class of phase functions for which this nondegeneracy condition does not hold. Thus in problems where one wants to switch coordinates to a coordinate system where Varchenko’s estimates are valid, one has greater flexibility. Some additional estimates are also proven for more degenerate situations, including some too degenerate for the Newton polyhedron to give the optimal decay in the sense of Varchenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V., Gusein-Zade S., Varchenko A.: Singularities of Differentiable Maps, vol. II. Birkhauser, Basel (1988)

    Google Scholar 

  2. Bierstone E., Milman P.: Resolution of singularities in Denjoy–Carleman classes. Selecta Math. (N.S.) 10(1), 1–28 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Christ M.: Hilbert transforms along curves. I. Nilpotent groups. Ann. Math. (2) 122(3), 575–596 (1985)

    Article  MathSciNet  Google Scholar 

  4. Christ M.: Convolution, curvature, and combinatorics, a case study. Int. Math. Res. Notices 19, 1033–1048 (1998)

    Article  MathSciNet  Google Scholar 

  5. Demailly J.-P., Kollar J.: Sem-continuity of complex singularity exponents and Kahler–Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4) 34(4), 525–556 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Greenleaf, A., Seeger, A.: Oscillatory and Fourier integral operators with degenerate canonical relation. Publicacions Matematiques special issue. In: Proceedings of the El Escorial Conference 2000, pp. 93–141 (2002)

  7. Fedoryuk M.V.: The Saddle-Point Method. Nauka, Moscow (1977)

    MATH  Google Scholar 

  8. Ikromov, I., Müller, D.: On adapted coordinate systems. Trans. Am. Math. Soc. (to appear)

  9. Karpushkin V.N.: Uniform estimates for volumes. Tr. Math. Inst. Steklova 221, 225–231 (1998)

    MathSciNet  Google Scholar 

  10. Greenblatt M.: A coordinate-dependent local resolution of singularities and applications. J. Funct. Anal. 255(8), 1957–1994 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Greenblatt, M.: Resolution of singularities, asymptotic expansions of oscillatory integrals, and related Phenomena (submitted)

  12. Greenblatt M.: Newton polygons and local integrability of negative powers of smooth functions in the plane. Trans. Am. Math. Soc. 358(2), 657–670 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenblatt M.: A direct resolution of singularities for functions of two variables with applications to analysis. J. Anal. Math. 92, 233–257 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Greenblatt M.: Sharp L 2 estimates for one-dimensional oscillatory integral operators with C phase. Am. J. Math. 127(3), 659–695 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Phong D.H., Stein E.M.: The Newton polyhedron and oscillatory integral operators. Acta Math. 179, 107–152 (1997)

    Article  MathSciNet  Google Scholar 

  16. Phong D.H., Stein E.M., Sturm J.: On the growth and stability of real-analytic functions. Am. J. Math. 121(3), 519–554 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Phong D.H., Sturm J.: Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. Math. (2) 152(1), 277–329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Phong D.H., Sturm J.: On the algebraic constructibility of varieties of integrable rational functions on C n. Math. Ann. 323(3), 453–484 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rychkov V.: Sharp L 2 bounds for oscillatory integral operators with C phases. Math. Zeitschrift 236, 461–489 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seeger A.: Radon transforms and finite type conditions. J. Am. Math. Soc. 11(4), 869–897 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stein, E.: Harmonic Analysis; Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematics Series, vol. 43, Princeton University Press, Princeton (1993)

  22. Varchenko A.N.: Newton polyhedra and estimates of oscillatory integrals. Funct. Anal. Appl. 18(3), 175–196 (1976)

    Google Scholar 

  23. Vassiliev V.: The asymptotics of exponential integrals, Newton diagrams, and classification of minima. Func. Anal. Appl. 11, 163–172 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Greenblatt.

Additional information

This research was supported in part by NSF grant DMS-0654073.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenblatt, M. Oscillatory integral decay, sublevel set growth, and the Newton polyhedron. Math. Ann. 346, 857–895 (2010). https://doi.org/10.1007/s00208-009-0424-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0424-7

Keywords

Navigation