Skip to main content
Log in

The elliptic Apostol–Dedekind sums generate odd Dedekind symbols with Laurent polynomial reciprocity laws

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Dedekind symbols are generalizations of the classical Dedekind sums (symbols). There is a natural isomorphism between the space of Dedekind symbols with Laurent polynomial reciprocity laws and the space of modular forms. We will define a new elliptic analogue of the Apostol–Dedekind sums. Then we will show that the newly defined sums generate all odd Dedekind symbols with Laurent polynomial reciprocity laws. Our construction is based on Machide’s result (J Number Theory 128:1060–1073, 2008) on his elliptic Dedekind–Rademacher sums. As an application of our results, we discover Eisenstein series identities which generalize certain formulas by Ramanujan (Collected Papers of Srinivasa Ramanujan, pp. 136–162. AMS Chelsea Publishing, Providence, 2000), van der Pol (Indag Math 13:261–271, 272–284, 1951), Rankin (Proc R Soc Edinburgh Sect A 76:107–117, 1976) and Skoruppa (J Number Theory 43:68–73, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol T.M.: Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fukuhara S.: Modular forms, generalized Dedekind symbols and period polynomials. Math. Ann. 310, 83–101 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fukuhara S.: Generalized Dedekind symbols associated with the Eisenstein series. Proc. Am. Math. Soc. 127, 2561–2568 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fukuhara S., Yui N.: Elliptic Apostol sums and their reciprocity laws. Trans. Am. Math. Soc. 356, 4237–4254 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kohnen W., Zagier D.: Modular forms with rational periods. In: Rankin, R.A. (eds) Modular Forms, pp. 197–249. Horwood, Chichester (1984)

    Google Scholar 

  6. Levin A.: Elliptic polylogarithms: an analytic theory. Compositio Math. 106, 267–282 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Machide T.: An elliptic analogue of the generalized Dedekind–Rademacher sums. J. Number Theory 128, 1060–1073 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Machide, T.: Elliptic Dedekind–Rademacher sums and transformation formulae of certain infinite series (preprint)

  9. van der Pol B.: On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications, I, II. Indag. Math. 13, 261–271 (1951) 272–284

    Google Scholar 

  10. Rademacher H., Grosswald E.: Dedekind sums (Carus Math. Mono. No. 16). Math. Assoc. Amer., Washington D.C. (1972)

    Google Scholar 

  11. Ramanujan, S.: On certain arithmetical functions, In: Collected Papers of Srinivasa Ramanujan, pp. 136–162. AMS Chelsea Publishing, Providence (2000)

  12. Rankin R.A.: Elementary proofs of relations between Eisenstein series. Proc. R. Soc. Edinburgh Sect. A 76, 107–117 (1976)

    MathSciNet  Google Scholar 

  13. Sczech R.: Dedekindsummen mit elliptischen Funktionen. Invent. Math. 76, 523–551 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Skoruppa N.-P.: A quick combinatorial proof of Eisenstein series identities. J. Number Theory 43, 68–73 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Walker P.: Elliptic Functions. John Wiley & Sons, Chichester (1996)

    MATH  Google Scholar 

  16. Weil A.: Elliptic functions according to Eisenstein and Kronecker. Springer, Berlin (1976)

    MATH  Google Scholar 

  17. Zagier D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104, 449–465 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Fukuhara.

Additional information

This work was supported by Grant-in-Aid for Scientific Research (No.19540101), Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuhara, S. The elliptic Apostol–Dedekind sums generate odd Dedekind symbols with Laurent polynomial reciprocity laws. Math. Ann. 346, 769–794 (2010). https://doi.org/10.1007/s00208-009-0416-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0416-7

Mathematics Subject Classification (2000)

Navigation