Skip to main content
Log in

The radial curvature of an end that makes eigenvalues vanish in the essential spectrum I

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The concern of this paper is to clarify a relationship between the curvatures at infinity and the spectral structure of the Laplacian. In particular, this paper discusses the question of whether there is an eigenvalue of the Laplacian embedded in the essential spectrum or not. The borderline-behavior of the radial curvatures for this problem will be determined: we will assume that the radial curvature K rad. of an end converges to a constant −1 at infinity with the decay order K rad. + 1 = o(r −1) and prove the absence of eigenvalues embedded in the essential spectrum. Furthermore, in order to show that this decay order K rad. + 1 = o(r −1) is sharp, we will construct a manifold with the radial curvature decay K rad. + 1 = O(r −1) and with an eigenvalue \({\frac{(n-1)^2}{4}+1}\) embedded in the essential spectrum \({[ \frac{(n-1)^2}{4}, \infty)}\) of the Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K., Kumura, H.: The uncertainty principle lemma under gravity, arXiv:0812.4663 (preprint)

  2. Atkinson F.V.: The asymptotic solution of second order differential equations. Ann. Math. Pura. Appl. 37, 347–378 (1954)

    Article  MATH  Google Scholar 

  3. Arai M., Uchiyama J.: On the von Neumann and Wigner potentials. J. Differ. Equ. 157, 348–372 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Donnelly H.: Eigenvalues embedded in the continuum for negatively curved manifolds. Michigan Math. J. 28, 53–62 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donnelly H.: Negative curvature and embedded eigenvalues. Math. Z. 203, 301–308 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donnelly H.: Embedded eigenvalues for asymptotically flat surfaces. Procee. Symp. Pure Math. 54(Part 3), 169–177 (1993)

    MathSciNet  Google Scholar 

  7. Donnelly H.: Exhaustion functions and the spectrum of Riemannian manifolds. Indian Univ. Math. J. 46, 505–528 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Donnelly H.: Spectrum of the Laplacian on asymptotically Euclidean spaces. Michigan Math. J. 46, 101–111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Donnelly H., Garofalo N.: Riemannian manifolds whose Laplacian have purely continuous spectrum. Math. Ann. 293, 143–161 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eidus D.M.: The principle of limit amplitude. Russian Math. Surv. 24(3), 97–167 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  11. Escobar J.: On the spectrum of the Laplacian on complete Riemannian manifolds. Comm. Partial Differ. Equ. 11, 63–85 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Escobar J., Freire A.: The spectrum of the Laplacian of manifolds of positive curvature. Duke Math. J. 65, 1–21 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Green, R., Wu, H.: Function theory on manifolds which possess a pole. Lecture Note in Mathematics, vol. 699

  14. Karp L.: Noncompact manifolds with purely continuous spectrum. Mich. Math. J. 31, 339–347 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kato T.: Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. Pure Appl. Math. 12, 403–426 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kasue A.: Applications of Laplacian and Hessian comparison theorems, Geometry of geodesics and related topics (Tokyo, 1982). Adv. Stud. Pure Math., vol. 3, pp. 333–386

  17. Kumura H.: On the essential spectrum of the Laplacian on complete manifolds. J. Math. Soc. Jpn. 49, 1–14 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kumura H.: A note on the absence of eigenvalues on negatively curved manifolds. Kyushu J. Math. 56, 109–121 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mochizuki K.: Growth properties of solutions of second order elliptic differential equations. J. Math. Kyoto Univ. 16, 351–373 (1976)

    MATH  MathSciNet  Google Scholar 

  20. Pinsky M.A.: Spectrum of the Laplacian on a manifold of negative curvature II. J. Differ. Geom. 14, 609–620 (1979)

    MathSciNet  Google Scholar 

  21. Roze S.N.: On the spectrum of an elliptic operator of second order. Math. USSR. Sb. 9, 183–197 (1969)

    Article  MATH  Google Scholar 

  22. Tayoshi T.: On the spectrum of the Laplace–Beltrami operator on a non-compact surface. Proc. Jpn. Acad. 47, 187–189 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Kumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumura, H. The radial curvature of an end that makes eigenvalues vanish in the essential spectrum I. Math. Ann. 346, 795–828 (2010). https://doi.org/10.1007/s00208-009-0410-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0410-0

Keywords

Navigation