Skip to main content
Log in

On different notions of tameness in arithmetic geometry

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The notion of a tamely ramified covering is canonical only for curves. Several notions of tameness for coverings of higher dimensional schemes have been used in the literature. We show that all these definitions are essentially equivalent. Furthermore, we prove finiteness theorems for the tame fundamental groups of arithmetic schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbes A.: The Grothendieck–Ogg–Shafarevich formula for arithmetic surfaces. J. Algebraic Geom. 9(3), 529–576 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Bourbaki N.: Commutative algebra. Elements of Mathematics. Springer, Berlin (1998)

    Google Scholar 

  3. Chinburg T., Erez B.: Equivariant Euler–Poincaré characteristics and tameness. Journées arithmétiques 1991. Société Math. de France, Astérisque 209, 179–194 (1992)

    MathSciNet  Google Scholar 

  4. Chinburg T., Erez B., Pappas G., Taylor M.J.: Tame actions of group schemes: integrals and slices. Duke Math. J. 82(2), 269–308 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (EGA 4). Inst. Hautes Études Sci. Publ. Math. I. No. 20 1964, II. No. 24 1965, No. 28 1966, IV. No. 32, 1967

  6. Endler O.: Valuation theory. Universitext. Springer, Heidelberg (1972)

    Google Scholar 

  7. Grothendieck, A., Murre, J.P.: The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. Lecture Notes in Mathematics, vol. 208. Springer, Berlin (1971)

  8. Katz, N., Lang, S.: Finiteness theorems in geometric classfield theory. With an appendix by Kenneth A. Ribet. Enseign. Math. (2) 27(3–4), 285–319 (1981)

  9. Lipman J.: Desingularization of two-dimensional schemes. Ann. Math. 107, 151–207 (1978)

    Article  MathSciNet  Google Scholar 

  10. Liu, Q.: Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford Science Publications, Oxford University Press, Oxford (2002)

  11. Lütkebohmert W.: On compactification of schemes. Manuscripta Math. 80, 95–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Grundlehren der Math. Wiss., Bd. 323. Springer, Berlin (2008)

  13. Saito S.: Class field theory for curves over local fields. J. Number Theory 21(1), 44–80 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schmidt A.: Tame coverings of arithmetic schemes. Math. Ann. 322(1), 1–18 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schmidt A.: Singular homology of arithmetic schemes. Algebra Number Theory 1(2), 183–222 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Serre J.-P.: Local fields. Graduate Texts in Mathematics, vol. 67. Springer, Berlin (1979)

    Google Scholar 

  17. Grothendieck A.: Revêtements étales et groupe fondamental (SGA 1). Lecture Notes in Mathematics, vol. 224. Springer, Berlin (1971)

    Google Scholar 

  18. Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Advanced Studies in Pure Math., vol. 2. North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris (1968)

  19. Artin, M., Grothendieck, A., et Verdier, J.L.: Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics, vols. 269, 270 and 305 (1972/3)

  20. Shafarevich, I.G.: Lectures on minimal models and birational transformations of two dimensional schemes. Tata Inst. Fundam. Res. 37, Bombay (1966)

  21. Vaquié, M.: Valuations. Resolution of singularities (Obergurgl, 1997), 539–590, Progr. Math., 181, Birkhäuser, Basel (2000)

  22. Wiesend G.: Tamely ramified covers of varieties and arithmetic schemes. Forum Math. 20(3), 515–522 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zariski O., Samuel P.: Commutative algebra vol. II. Graduate Texts in Mathematics, vol. 29. Springer, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerz, M., Schmidt, A. On different notions of tameness in arithmetic geometry. Math. Ann. 346, 641–668 (2010). https://doi.org/10.1007/s00208-009-0409-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0409-6

Keywords

Navigation