Abstract
We construct an integration theory for sc-differential forms on oriented branched ep-subgroupoid for which Stokes’ theorem holds true. The construction is compatible with equivalences between ep-groupoids and so gives rise to an integration theory for branched suborbifolds of polyfolds. Examples are the solutions sets of proper oriented Fredholm sections of strong polyfold bundles for which we obtain invariants this way.
This is a preview of subscription content, access via your institution.
References
Bourgeois F., Eliashberg Y., Hofer H., Wysocki K., Zehnder E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)
Cieliebak K., Mundeti Riera I., Salamon D.A.: Equivariant moduli problems, branched manifolds, and the Euler class. Topology 42, 641–700 (2003)
Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume, Part II, 560–673 (2000)
Fathi A.: Partitions of unity for countable covers. Am. Math. Mon. 104(8), 720–723 (1997)
Gromov M.: Pseudoholomorphic curves in symplectic geometry. Invent. Math. 82, 307–347 (1985)
Haefliger, A.: Homotopy and integrability, in Manifolds (Amsterdam 1970). Springer Lecture Notes in Math, vol. 197, pp. 133–163 (1971)
Haefliger A.: Groupoïdes d’holonomie et classifants. Astérisque 116, 70–97 (1984)
Haefliger A.: Groupoids and foliations. Contemp. Math. 282, 83–110 (2001)
Hofer, H.: A general Fredholm theory and applications, current developments in mathematics. In: Jerison, D., Mazur, B., Mrowka, T., Schmid, W., Stanley, R., Yau, S.T., (eds.) International Press, New York (2006)
Hofer, H.: Polyfolds and a general Fredholm theory. (preprint 2008); arXiv:0809.3753
Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory I: a splicing-based differential geometry. J. Eur. Math. Soc. 9, 841–876 (2007)
Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory II: implicit function theorems. Geom. Funct. Anal. 19, 206–293 (2009)
Hofer H., Wysocki K., Zehnder E.: A general Fredholm theory III: Fredholm functors and polyfolds. Geom. Topol. 13, 2279–2387 (2009)
Hofer, H., Wysocki, K., Zehnder, E.: A general Fredholm theory IV: operations (in preparation)
Hofer, H., Wysocki, K., Zehnder, E.: Connections and determinant bundles for polyfold Fredholm operators (in preparation)
Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory I: Gromov-Witten theory (in preparation)
Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory II: the polyfolds of symplectic field theory (in preparation)
Lang S.: Fundamentals of Differential Geometry, vol. 191, 2nd edn. Springer, Heidelberg (1999)
Lang S.: Differential and Riemannian Manifolds, vol. 160, 3rd edn. Springer Graduate Texts, Heidelberg (1995)
McDuff D.: Groupoids, branched manifolds and multisection. J. Symplectic Geom. 4, 259–315 (2006)
Moerdijk I.: Orbifolds as groupoids: an introduction. Contemp. Math. 310, 205–222 (2002)
Moerdijk, I., Mrčun, J.: Introduction to Foliation and Lie Groupoids. Cambridge Stud. Adv. Math., vol. 91 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
H. Hofer’s research was partially supported by NSF grant DMS-0603957. K. Wysocki’s research was partially supported by NSF grant DMS-0606588. E. Zehnder’s research was partially supported by TH-project.
Rights and permissions
About this article
Cite this article
Hofer, H., Wysocki, K. & Zehnder, E. Integration theory on the zero sets of polyfold Fredholm sections. Math. Ann. 346, 139–198 (2010). https://doi.org/10.1007/s00208-009-0393-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-009-0393-x