Mathematische Annalen

, Volume 344, Issue 3, pp 717–747 | Cite as

The abelian monodromy extension property for families of curves

  • Sabin CautisEmail author


Necessary and sufficient conditions are given (in terms of monodromy) for extending a family of smooth curves over an open subset \({U \subset S}\) to a family of stable curves over S. More precisely, we introduce the abelian monodromy extension (AME) property and show that the standard Deligne–Mumford compactification is the unique, maximal AME compactification of the moduli space of curves. We also show that the Baily–Borel compactification is the unique, maximal projective AME compactification of the moduli space of abelian varieties.


Modulus Space Abelian Variety Exceptional Divisor Mapping Class Group Dehn Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. arXiv:0703310Google Scholar
  2. 2.
    Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology. Cambridge University Press, London, pp. xii+149 (2007)Google Scholar
  3. 3.
    Altman A., Kleiman S.L.: On the purity of the branch locus. Compos. Math. Fasc. 23(4), 461–465 (1971)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History, Frontiers and Applications, vol. IV. Math. Sci. Press, Brookline, pp. iv+335 (1975)Google Scholar
  5. 5.
    Borel A.: Some metric properties of arithmetic quotients of symmetric space and an extension theorem. J. Diff. Geom. 6, 543–560 (1972)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Birman J., Lubotzky A., McCarthy J.: Abelian and solvable subgroups of the mapping class groups. Duke Math. J. 50(4), 1107–1120 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boggi, M.: Monodromy of stable curves of compact type: rigidity and extension. Int. Math. Res. Not., no. 6, Article ID rnm017, p 16 (2007)Google Scholar
  8. 8.
    Cattani, E.: Mixed Hodge structures, compactifications and monodromy weight filtration, Topics in transcendental algebraic geometry (Princeton, NJ, 1981/1982). Ann. of Math. Stud., vol. 106, pp. 75–100, Princeton University Press, Princeton (1984)Google Scholar
  9. 9.
    Chai, C.-L., Faltings, G.: Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 22, Springer, Heidelberg, pp. xii+316 (1990)Google Scholar
  10. 10.
    Deligne, P.: Théorie de Hodge II. Inst. Hautes Études Sci. Publ. Math. No. 40, pp. 5–57 (1971)Google Scholar
  11. 11.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus, Publications mathématiques de l’I.H.É.S. tome 36, 75–109 (1969)Google Scholar
  12. 12.
    Donaldson, S.K.: Polynomials, vanishing cycles and Floer homology. Mathematics: Frontiers and Perspectives. Am. Math. Soc., Providence, pp. 55–64 (2000)Google Scholar
  13. 13.
    Erdenberger C., Grushevsky S., Hulek K.: Intersection theory of toroidal compactifications of \({{\mathcal A}_4}\). Bull. Lond. Math. Soc. 38(3), 396–400 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grothendieck, A., Murre, J.: The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme. LNM, vol. 208. Springer, Heidelberg (1971)Google Scholar
  15. 15.
    Grothendieck, A.: Exposé IX; Séminaire de Géométrie Algébrique 7Google Scholar
  16. 16.
    Harris, J., Morrison, I.: Moduli of Curves, Graduate Texts in Mathematics, vol. 187, pp. xiv+366 Springer, New York (1998)Google Scholar
  17. 17.
    Kollár, J.: Fundamental groups of rationally connected varieties. Mich. Math. J. 48, 359–368 (2000) arXiv:math.AG/0203174Google Scholar
  18. 18.
    Keel S., Mori S.: Quotients by groupoids. Ann. Math. 145, 193–213 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kresch A., Vistoli A.: On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map. Bull. Lond. Math. Soc. 36(2), 188–192 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ivanov, N.V.: Automorphisms of Teichmüller modular groups. Lectures Notes in Math., vol. 1346, pp. 199–270. Springer, Berlin (1988)Google Scholar
  21. 21.
    Jong A.J., Oort F.: On extending families of curves. J. Algebraic Geom. 6(3), 545–562 (1997)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Landman A.: On the Picard–Lefschetz transformation for algebraic manifolds acquiring general singularities. Trans. Am. Math. Soc. 181, 89–126 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Looijenga E.: Smooth Deligne–Mumford compactifications by means of Prym level structures. J. Algebraic Geom. 3(2), 283–293 (1994)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Moret-Bailly L.: Un théorème de pureté pour les familles de courbes lisses. C. R. Acad. Sci. Paris Sér. I Math. 300(14), 489–492 (1985)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Mochizuki S.: Extending families of curves over log regular schemes. J. Reine Angew. Math. 511, 43–71 (1999)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Noohi, B.: Foundations of topological stacks I. math.AG/0503247Google Scholar
  27. 27.
    Saito T.: Log smooth extension of a family of curves and semi-stable reduction. J. Algebraic Geom. 13(2), 287–321 (2004)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Schmid, W.: Abbildungen in arithmetische Quotienten hermitesch symmetrischer Räume (German). Lecture Notes in Math., vol. 412, pp. 243–258. Springer, Berlin (1974)Google Scholar
  29. 29.
    Stix J.: A monodromy criterion for extending curves. Int. Math. Res. Not. 29, 1787–1802 (2005)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vakil R.: The moduli space of curves and its tautological ring. Notices Am. Math. Soc. 50(6), 647–658 (2003)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations