Mathematische Annalen

, 344:543 | Cite as

Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity

  • Jason BehrstockEmail author
  • Cornelia Druţu
  • Lee Mosher


We study the geometry of non-relatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with non-relatively hyperbolic peripheral subgroups is a quasi-isometry invariant. As an application, Artin groups are relatively hyperbolic if and only if freely decomposable. We also introduce a new quasi-isometry invariant of metric spaces called metrically thick, which is sufficient for a metric space to be non-hyperbolic relative to any non-trivial collection of subsets. Thick finitely generated groups include: mapping class groups of most surfaces; outer automorphism groups of most free groups; certain Artin groups; and others. Non-uniform lattices in higher rank semisimple Lie groups are thick and hence non-relatively hyperbolic, in contrast with rank one which provided the motivating examples of relatively hyperbolic groups. Mapping class groups are the first examples of non-relatively hyperbolic groups having cut points in any asymptotic cone, resolving several questions of Drutu and Sapir about the structure of relatively hyperbolic groups. Outside of group theory, Teichmüller spaces for surfaces of sufficiently large complexity are thick with respect to the Weil–Peterson metric, in contrast with Brock–Farb’s hyperbolicity result in low complexity.

Mathematics Subject Classification (2000)

Primary 20F69 20F65 Secondary 20F28 20F36 30F60 


  1. 1.
    Adyan S.I.: Random walks on free periodic groups. Izv. Akad. Nauk SSSR Ser. Mat. 46, 1139–1149 (1982)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alibegović E.: Translation lengths in Out(F n). Geometriae Dedicata 92, 87–93 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson J., Aramayona J., Shackleton K.: An obstruction to the strong relative hyperbolicity of a group. J. Group Theory 10, 749–756 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aramayona, J.: The Weil–Petersson geometry of the five-times punctured sphere. Ph.D. thesis, University of Southampton (2004)Google Scholar
  5. 5.
    Behrstock J.: Asymptotic geometry of the mapping class group and Teichmüller space. Geom. Topol. 10, 1523–1578 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Behrstock, J., Druţu, C.: In preparationGoogle Scholar
  7. 7.
    Behrstock J., Neumann W.: Quasi-isometric classification of graph manifold groups. Duke Math. J. 141, 217–240 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bestvina, M.: Problem list in geometric group theory.
  9. 9.
    Bestvina M., Brady N.: Morse theory and finiteness properties of groups. Invent. Math. 129, 445–470 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bestvina M., Kleiner B., Sageev M.: The asymptotic geometry of right-angled Artin groups, I. Geom. Topol. 12, 1653–1700 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Birman, J.: Braids, links, and mapping class groups. Annals of Mathematical Studies, vol. 82. Princeton University Press, Princeton (1974)Google Scholar
  12. 12.
    Birman J., Lubotzky A., McCarthy J.: Abelian and solvable subgroups of the mapping class groups. Duke Math. J. 50, 1107–1120 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Borel, A.: Introduction aux groupes arithmétiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341. Hermann, Paris (1969)Google Scholar
  14. 14.
    Borel A., Tits J.: Groupes réductifs. IHES Sci. Publ. Math. 27, 55–152 (1965)MathSciNetGoogle Scholar
  15. 15.
    Bourbaki N.: Topologie générale. Hermann, Paris (1965)Google Scholar
  16. 16.
    Bowditch B.: Continuously many quasi-isometry classes of 2-generator groups. Comment. Math. Helv. 73, 232–236 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Bowditch, B.: Relatively hyperbolic groups. Preprint, University of Southampton. (1999)
  18. 18.
    Bowditch, B.: Hyperbolic 3–manifolds and the geometry of the curve complex. In: Laptev, A. (ed.) European Congress of Mathematics, Stockholm, June 27–July 2, 2004Google Scholar
  19. 19.
    Brady T., McCammond J.: Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Alg. 151, 1–9 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bridson M., Haefliger A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)zbMATHGoogle Scholar
  21. 21.
    Brieskorn E., Saito K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Brock, J.: The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. AMS 16:495–535 (electronic)Google Scholar
  23. 23.
    Brock J., Farb B.: Curvature and rank of Teichmüller space. Am. J. Math. 128, 1–22 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Brock, J., Masur, H.: Coarse and synthetic Weil–Petersson geometry: quasi-flats, geodesics, and relative hyperbolicity. Preprint, ARXIV:0707.1469 (2007)Google Scholar
  25. 25.
    Charney R.: Artin groups of finite type are biautomatic. Math. Ann. 292, 671–683 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Charney R., Peifer D.: The K(π, 1)-conjecture for the affine braid groups. Comment. Math. Helv. 78, 584–600 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Culler M., Vogtmann K.: A group-theoretic criterion for property FA. Proc. AMS 124, 677–683 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Dahmani, F.: Les groupes relativement hyperboliques et leurs bords. Ph.D. thesis, University of Strasbourg (2003).
  29. 29.
    Dehn M.: Die Gruppe der Abbildungsklassen. Acta Math. 69, 135–206 (1938)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Deligne P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Druţu C.: Nondistorsion des horosphères dans des immeubles euclidiens et dans des espaces symétriques. Geom. Funct. Anal. 7, 712–754 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Druţu C.: Filling in solvable groups and in lattices in semisimple groups. Topology 43, 983–1033 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Druţu, C.: Relatively hyperbolic groups: geometry and quasi-isometric invariance. Preprint, arXiv: math.GR/0605211. To appear in Comment. Math. Helv. (2006)Google Scholar
  34. 34.
    Druţu C., Sapir M.: Tree-graded spaces and asymptotic cones of groups. Topology 44, 959–1058 (2005) With an appendix by Denis Osin and Mark SapirzbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Druţu C., Sapir M.: Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups. Adv. Math. 217, 1313–1367 (2007)Google Scholar
  36. 36.
    Dunwoody, M.J.: An inaccessible group. In: Geometric group theory, vol. 1 (Sussex, 1991). London Math. Soc. Lecture Note Ser., vol. 181, pp. 75–78. Cambridge University Press, Cambridge (1993)Google Scholar
  37. 37.
    Dunwoody M.J., Sageev M.: JSJ splittings for finitely presented groups over slender group. Invent. Math. 135, 25–44 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Epstein D.B.A., Cannon J., Holt D.F., Levy S., Paterson M.S., Thurston W.P.: Word Processing and Group Theory. Jones and Bartlett, Sudbury (1992)Google Scholar
  39. 39.
    Erschler A., Osin D.: Fundamental groups of asymptotic cones. Topology 44, 827–843 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Farb B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8, 810–840 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Farb B., Lubotzky A., Minsky Y.: Rank one phenomena for mapping class groups. Duke Math. J. 106, 581–597 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Gersten S.M., Short H.: Small cancellation theory and automatic groups. Invent. Math. 102, 305–334 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Gersten S.M., Short H.: Rational subgroups of biautomatic groups. Ann. Math. 134, 125–158 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Gersten S.M.: Quadratic divergence of geodesics in CAT(0)-spaces. Geom. Funct. Anal. 4, 37–51 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Gromov M.: Groups of polynomial growth and expanding maps. IHES Sci. Publ. Math. 53, 53–73 (1981)zbMATHMathSciNetGoogle Scholar
  46. 46.
    Gromov M.: Hyperbolic groups. In: Gersten, S.(eds) Essays in group theory, MSRI Publications, vol. 8, Springer, Berlin (1987)Google Scholar
  47. 47.
    Gromov, M.: Asymptotic invariants of infinite groups. In: Niblo, G., Roller, M. (eds.) Geometric Group Theory, vol. 2 (Sussex, 1991). LMS Lecture Notes, vol. 182, pp. 1–295. Cambridge University Press, Cambridge (1993)Google Scholar
  48. 48.
    Harvey, W.J.: Boundary structure of the modular group. In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978). Annals of Mathametical Studies, vol. 97, pp. 245–251. Princeton University Press, Princeton (1981)Google Scholar
  49. 49.
    Humphries, S.P.: Generators for the mapping class group. In: Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977). Lecture Notes in mathematics, vol. 722, pp. 44–47. Springer, Berlin (1979)Google Scholar
  50. 50.
    Ivanov, N.V.: Mapping class groups. In: Handbook of geometric topology, pp. 523–633. North-Holland, Amsterdam (2002)Google Scholar
  51. 51.
    Kapovich I., Schupp P.: Relative hyperbolicity and Artin groups. Geometriae Dedicata 107, 153–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Kapovich M., Kleiner B., Leeb B.: Quasi-isometries and the de Rham decomposition. Topology 37, 1193–1211 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Kapovich M., Leeb B.: Quasi-isometries preserve the geometric decomposition of Haken manifolds. Invent. Math. 128, 393–416 (1997)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Kapovich M., Leeb B.: 3-manifold groups and nonpositive curvature. Geom. Funct. Anal. 8, 841–852 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Karlsson A., Noskov G.A.: Some groups having only elementary actions on metric spaces with hyperbolic boundaries. Geometriae Dedicata 104, 119–137 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Kent, R.P. IV, Peifer, D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12, 85–97 (2002). International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)Google Scholar
  57. 57.
    Kleiner, B.: personal communcationGoogle Scholar
  58. 58.
    Kleiner B., Leeb B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. IHES Publ. Math. 86, 115–197 (1997)zbMATHMathSciNetGoogle Scholar
  59. 59.
    Leeb B.: 3-manifolds with(out) metrics of nonpositive curvature. Invent. Math. 122, 277–289 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Lickorish W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Phil. Soc. 60, 769–778 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Lubotzky A., Mozes S., Raghunathan M.S.: The word and Riemannian metrics on lattices of semisimple groups. IHES Sci. Publ. Math. 91(2000), 5–53 (2001)Google Scholar
  62. 62.
    Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17. Springer, Berlin (1991)Google Scholar
  63. 63.
    Masur H., Minsky Y.: Geometry of the complex of curves, I. Hyperbolicity. Invent. Math. 138, 103–149 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Masur H., Minsky Y.: Geometry of the complex of curves II: Hierarchical structure. Geom. Funct. Anal. 10, 902–974 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Morris, W.D.: Introduction to arithmetic groups. Preprint,
  66. 66.
    Mosher L.: Mapping class groups are automatic. Ann. Math. 142, 303–384 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Mosher, L., Sageev, M., Whyte, K.: Quasi-actions on trees I: bounded valence. Ann. Math. 116–154 (2003)Google Scholar
  68. 68.
    Mosher, L., Sageev, M., Whyte, K.: Quasi-actions on trees II: Finite depth Bass–Serre trees. Preprint, arXiv:math.GR/0405237 (2005)Google Scholar
  69. 69.
    Neumann J.v.: Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre. Math. Ann. 99, 373–391 (1928)zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Niblo G.A., Reeves L.D.: The geometry of cube complexes and the complexity of their fundamental groups. Topology 37, 621–633 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Ol’shanskii A.: On the question of the existence of an invariant mean on a group. Uspekhi Mat. Nauk 35, 199–200 (1980)MathSciNetGoogle Scholar
  72. 72.
    Ol’shanskii, A., Sapir, M.V.: Non-amenable finitely presented torsion-by-cyclic groups. IHES Sci. Publ. Math. 43–169 (2002)Google Scholar
  73. 73.
    Ol’shanskii, A.Yu.: Distortion functions for groups. In: Geometric group theory down under (Canberra, 1996), pp. 225–259. De Gruyter, New York (1999)Google Scholar
  74. 74.
    Osin, D.V.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc. 179, vi+100 (2006)Google Scholar
  75. 75.
    Papasoglu P.: Quasi-isometry invariance of group splittings. Ann. Math. 161, 759–830 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Papasoglu P., Whyte K.: Quasi-isometries between groups with infinitely many ends. Comment. Math. Helv. 77, 133–144 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Paris L.: Parabolic subgroups of Artin groups. J. Algebra 196, 369–399 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Peifer D.: Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110, 15–56 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Pride S.J.: On Tits’ conjecture and other questions concerning Artin and generalized Artin groups. Invent. Math. 86, 347–356 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Raghunathan M.S.: A note on generators for arithmetic subgroups of algebraic groups. Pac. J. Math. 152, 365–373 (1992)zbMATHMathSciNetGoogle Scholar
  81. 81.
    Schwartz R.: The quasi-isometry classification of rank one lattices. IHES Sci. Publ. Math. 82, 133–168 (1996)Google Scholar
  82. 82.
    Stallings J.: On torsion free groups with infinitely many ends. Ann. Math. 88, 312–334 (1968)CrossRefMathSciNetGoogle Scholar
  83. 83.
    Thomas S., Velickovic B.: Asymptotic cones of finitely generated groups. Bull. Lond. Math. Soc. 32, 203–208 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Tukia P.: Covergence groups and Gromov’s metric hyperbolic spaces. N. Z. J. Math. 23, 157–187 (1994)zbMATHMathSciNetGoogle Scholar
  85. 85.
    Van den Dries, L., Wilkie, A.: On Gromov’s theorem concerning groups of polynomial growth and elementary logic. J. Algebra 89, 349–374 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Van der Lek, H.: The homotopy type of complex hyperplane complements. Ph.D. thesis, Universiteit Nijmegen (1983)Google Scholar
  87. 87.
    Venkataramana T.N.: On systems of generators of arithmetic subgroups of higher rank groups. Pac. J. Math. 166, 193–212 (1994)zbMATHMathSciNetGoogle Scholar
  88. 88.
    Yaman A.: A topological characterisation of relatively hyperbolic groups. J. Reine Angew. Math. (Crelle’s J.) 566, 41–89 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK
  3. 3.Department of Mathematics and Computer ScienceRutgers University at NewarkNewarkUSA

Personalised recommendations