Mathematische Annalen

, Volume 344, Issue 3, pp 501–510 | Cite as

Descent obstruction is equivalent to étale Brauer–Manin obstruction

  • Alexei SkorobogatovEmail author


Let X be a projective variety over a number field. Completing earlier work of D. Harari, C. Demarche and M. Stoll, we prove that the obstruction to the Hasse principle and weak approximation on X given by descent on torsors under linear algebraic groups is equivalent to the Brauer–Manin obstruction applied to étale covers of X.


Smooth Projective Variety Weak Approximation Abelian Surface Kodaira Dimension Enriques Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basile, C.L., Skorobogatov, A.N.: On the Hasse principle for bielliptic surfaces. In: Number theory and algebraic geometry. LMS Lecture Notes Series, vol. 303, pp. 31–40. Cambridge University Press, London (2003)Google Scholar
  2. 2.
    Beauville, A.: Surfaces algébriques complexes. Astérisque, vol. 54 (1978)Google Scholar
  3. 3.
    Borovoi M.: Abelianization of the second nonabelian Galois cohomology. Duke Math. J. 72, 217–239 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bosch S., Lütkebohmert W., Raynaud M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21. Springer, Berlin (1990)Google Scholar
  5. 5.
    Cunnane, S.: Rational points on Enriques surfaces. PhD thesis, Imperial College London (2007)Google Scholar
  6. 6.
  7. 7.
    Demarche, C.: Obstruction de descente et obstruction de Brauer–Manin (2008, preprint)Google Scholar
  8. 8.
    Harari D.: Weak approximation and non-abelian fundamental groups. Ann. Sci. École Norm. Sup. 33, 467–484 (2000)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Harari D.: Groupes algébriques et points rationnels. Math. Ann. 322, 811–826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harari D., Skorobogatov A.N.: Non-abelian cohomology and rational points. Compos. Math. 130, 241–273 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Harari D., Skorobogatov A.N.: Non-abelian descent and the arithmetic of Enriques surfaces. Int. Math. Res. Not. 52, 3203–3228 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Poonen, B.: Insufficiency of the Brauer–Manin obstruction applied to étale covers (2008, preprint)Google Scholar
  13. 13.
    Skorobogatov A.N.: Beyond the Manin obstruction. Invent. Math. 135, 399–424 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Skorobogatov A.: Torsors and Rational Points. Cambridge University Press, London (2001)zbMATHGoogle Scholar
  15. 15.
    Stoll M.: Finite descent obstructions and rational points on curves. J. Algebra Number Theory 1, 349–391 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Zarhin Yu.G., Skorobogatov A.N.: A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces. J. Alg. Geom. 17, 481–502 (2008)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK
  2. 2.Russian Academy of SciencesInstitute for the Information Transmission ProblemsMoscowRussia

Personalised recommendations