Skip to main content

Advertisement

Log in

Free abelian covers, short loops, stable length, and systolic inequalities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We explore the geometry of the Abel–Jacobi map f from a closed, orientable Riemannian manifold X to its Jacobi torus \(H_1(X;{\mathbb{R}})/ H_1(X;{\mathbb{Z}})_{{\mathbb{R}}}\) . Applying M. Gromov’s filling inequality to the typical fiber of f, we prove an interpolating inequality for two flavors of shortest length invariants of loops. The procedure works, provided the lift of the fiber is non-trivial in the homology of the maximal free abelian cover, \(\overline{X}\) , classified by f. We show that the finite-dimensionality of the rational homology of \(\overline{X}\) is a sufficient condition for the homological non-triviality of the fiber. When applied to nilmanifolds, our “fiberwise” inequality typically gives stronger information than the filling inequality for X itself. In dimension 3, we present a sufficient non-vanishing condition in terms of Massey products. This condition holds for certain manifolds that do not fiber over their Jacobi torus, such as 0-framed surgeries on suitable links. Our systolic inequality applies to surface bundles over the circle (provided the algebraic monodromy has 1-dimensional coinvariants), even though the Massey product invariant vanishes for some of these bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko I.K. (2002). Forte souplesse intersystolique de variétés fermées et de polyèdres. Annales Inst. Fourier (Grenoble) 52: 1259–1284

    MATH  MathSciNet  Google Scholar 

  2. Bangert V., Croke C., Ivanov S. and Katz M. (2007). Boundary case of equality in optimal Loewner-type inequalities. Trans. Am. Math. Soc. 359(1): 1–17 arXiv:math.DG/0406008

    Article  MATH  MathSciNet  Google Scholar 

  3. Bangert V. and Katz M. (2003). Stable systolic inequalities and cohomology products. Comm. Pure Appl. Math. 56: 979–997

    Article  MATH  MathSciNet  Google Scholar 

  4. Bangert V. and Katz M. (2004). An optimal Loewner-type systolic inequality and harmonic one-forms of constant norm. Comm. Anal. Geom. 12: 703–732

    MATH  MathSciNet  Google Scholar 

  5. Barge J. (1980). Dualité dans les revêtements galoisiens. Invent. Math. 58: 101–106

    Article  MATH  MathSciNet  Google Scholar 

  6. Buser, P., Karcher, H.: Gromov’s almost flat manifolds. Astérisque, vol. 81. Société Mathématique de France, Paris (1981)

  7. Charlap L. and Vasquez A. (1965). Compact flat Riemannian manifolds II: The cohomology of \({\mathbb{Z}}_p\) -manifoldsAm. J. Math. 87: 551–563

    Article  MATH  MathSciNet  Google Scholar 

  8. Cochran, T.: Derivatives of links: Milnor’s concordance invariants and Massey’s products. Mem. Am. Math. Soc. 84(427) (1990)

  9. Cochran T. and Masters J. (2006). The growth rate of the first Betti number in abelian covers of 3-manifolds. Math. Proc. Camb. Phil. Soc. 141(3): 465–476 arXiv:math.GT/0508294

    Article  MATH  MathSciNet  Google Scholar 

  10. Cordero L., Fernández M. and De Leon M. (1985). Examples of compact non-Kähler almost Kähler manifolds. Proc. Am. Math. Soc. 95: 280–286

    Article  MATH  Google Scholar 

  11. Croke, C., Katz, M.: Universal volume bounds in Riemannian manifolds. In: Surveys in Differential Geometry (Boston, MA, 2002), vol. VIII, pp. 109–137. International Press, Somerville (2003)

  12. Federer H. (1974). Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24: 351–407

    Article  MATH  MathSciNet  Google Scholar 

  13. Freedman, M.: \({\mathbb{Z}}_2\) -systolic-freedom. In: Proceedings of the Kirbyfest, Berkeley, CA, 1998. Geom. Topol. Monogr. vol. 2, pp. 113–123. Geom. Topol, Coventry (1999)

  14. Gabai D. (1987). Foliations and the topology of 3-manifolds III. J. Differ. Geom. 26: 479–536

    MATH  MathSciNet  Google Scholar 

  15. Gromov M. (1983). Filling Riemannian manifolds. J. Differ. Geom. 18: 1–147

    MATH  MathSciNet  Google Scholar 

  16. Gromov, M.: Systoles and intersystolic inequalities. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), vol. 1, pp. 291–362. Sémin. Congr., Soc. Math., Paris (1996)

  17. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Program in Mathematics, vol. 152. Birkhäuser, Boston (1999)

  18. Habegger N. and Beliakova A. (2000). The Casson–Walker–Lescop invariant as a quantum 3-manifold invariant. J. Knot Theory Ramif. 9: 459–470

    MATH  MathSciNet  Google Scholar 

  19. Hebda J. (1986). The collars of a Riemannian manifold and stable isosystolic inequalities. Pacific J. Math. 121: 339–356

    MATH  MathSciNet  Google Scholar 

  20. Ivanov S. and Katz M. (2004). Generalized degree and optimal Loewner-type inequalities. Israel J. Math. 141: 221–233

    MATH  MathSciNet  Google Scholar 

  21. Katz M. (2002). Local calibration of mass and systolic geometry. Geom. Funct. Anal. 12: 598–621

    Article  MATH  MathSciNet  Google Scholar 

  22. Katz, M.: Systolic geometry and topology. In: Mathematical Surveys and Monographs, vol. 137. American Mathematical Society, Providence (2007)

  23. Katz, M., Lescop, C.: Filling area conjecture, optimal systolic inequalities, and the fiber class in abelian covers. In: Geometry, Spectral Theory, Groups, and Dynamics, pp. 181–200, Contemporary Mathematics, vol. 387, American Mathematical Society, Providence (2005)

  24. Katz M. and Suciu A. (2001). Systolic freedom of loop space. Geom. Funct. Anal. 11: 60–73

    Article  MATH  MathSciNet  Google Scholar 

  25. Kojima S. (1983). Milnor’s \(\bar{\mu}\) -invariants, Massey products and Whitney’s trick in 4 dimensionsTopol. Appl. 16: 43–60

    Article  MATH  MathSciNet  Google Scholar 

  26. Lescop, C.: Global Surgery Formula for the Casson–Walker invariant, Annals of Mathematical Studies, vol. 140. Princeton University Press, Princeton (1996)

  27. Milnor, J.W.: Infinite cyclic coverings. In: Conference on the topology of manifolds, pp. 115–133, Prindle, Weber & Schmidt, Boston (1968)

  28. Milnor, J.W.: On the 3-dimensional Brieskorn manifolds M(p, q, r), in Knots, groups, and 3-manifolds, pp. 175–225. Annals of Mathematical Studies, vol. 84. Princeton University Press, Princeton (1975)

  29. Nabutovsky A. and Rotman R. (2004). Volume, diameter and the minimal mass of a stationary 1-cycle. Geom. Funct. Anal. 14: 748–790

    Article  MATH  MathSciNet  Google Scholar 

  30. Pansu P. (1983). Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory Dynam. Syst. 3: 415–445

    Article  MATH  MathSciNet  Google Scholar 

  31. Porter R. (1980). Milnor’s \(\bar \mu\) -invariants and Massey productsTrans. Am. Math. Soc. 257(1): 39–71

    Article  MATH  Google Scholar 

  32. Pu P.M. (1952). Some inequalities in certain nonorientable Riemannian manifolds. Pacific J. Math. 2: 55–71

    MATH  MathSciNet  Google Scholar 

  33. Rolfsen, D.: Knots and links. Corrected reprint of the 1976 original, Mathematics Lecture Series, vol.~7. Publish or Perish, Houston (1990)

  34. Sabourau S. (2004). Global and local volume bounds and the shortest geodesic loop. Comm. Anal. Geom. 12: 1039–1053

    MATH  MathSciNet  Google Scholar 

  35. Santharoubane L.J. (1983). Cohomology of Heisenberg Lie algebras. Proc. Am. Math. Soc. 87: 23–28

    Article  MATH  MathSciNet  Google Scholar 

  36. Turaev, V.G.: The Milnor invariants and Massey products. Studies in topology, II. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 66, 189–203, 209–210 (1976). English translation in J. Soviet Math. 12, 128–137 (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kreck.

Additional information

A. I. Suciu was supported by the National Science Foundation (grant DMS-0105342).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreck, M., Suciu, A.I. Free abelian covers, short loops, stable length, and systolic inequalities. Math. Ann. 340, 709–729 (2008). https://doi.org/10.1007/s00208-007-0182-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0182-3

Mathematics Subject Classification (2000)

Navigation