Skip to main content
Log in

Area-stationary surfaces inside the sub-Riemannian three-sphere

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the sub-Riemannian metric g h on \({\mathbb{S}}^{3}\) given by the restriction of the Riemannian metric of curvature 1 to the plane distribution orthogonal to the Hopf vector field. We compute the geodesics associated to the Carnot–Carathéodory distance and we show that, depending on their curvature, they are closed or dense subsets of a Clifford torus. We study area-stationary surfaces with or without a volume constraint in (\({{\mathbb{S}}}^{3},g_{h}\)). By following the ideas and techniques by Ritoré and Rosales (Area-stationary surfaces in the Heisenberg group \({{\mathbb{H}}}^1\), arXiv:math.DG/0512547) we introduce a variational notion of mean curvature, characterize stationary surfaces, and prove classification results for complete volume-preserving area-stationary surfaces with non-empty singular set. We also use the behaviour of the Carnot–Carathéodory geodesics and the ruling property of constant mean curvature surfaces to show that the only C 2 compact, connected, embedded surfaces in (\({{\mathbb{S}}}^{3},g_{h}\)) with empty singular set and constant mean curvature H such that \(H/\sqrt{1+H^2}\) is an irrational number, are Clifford tori. Finally we describe which are the complete rotationally invariant surfaces with constant mean curvature in (\({{\mathbb{S}}}^{3},g_{h}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh Z.M. (2003). Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564: 63–83

    MATH  MathSciNet  Google Scholar 

  2. Barbosa J.L., do Carmo M. and Eschenburg J. (1988). Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1): 123–138

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellaïche, A.: The Tangent Space in Sub-Riemannian Geometry. Sub-riemannian geometry, Prog. Math., vol 144, pp. 1–78. Birkhäuser, Basel (1996)

  4. Capogna, L., Danielli, D., Pauls, S., Tyson, J.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Prog. Math., vol 259, Birkhäuser, Basel (2007)

  5. Cheng J.-H., Hwang J.-F., Malchiodi A. and Yang P. (2005). Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4(1): 129–177

    MATH  MathSciNet  Google Scholar 

  6. Cheng J.-H., Hwang J.-F. and Yang P. (2007). Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337(2): 253–293

    Article  MATH  MathSciNet  Google Scholar 

  7. Danielli, D., Garofalo, N., Nhieu, D.-M.: Minimal surfaces, surfaces of constant mean curvature and isoperimetry in Sub-riemannian groups (2004, preprint)

  8. Danielli, D., Garofalo, N., Nhieu, D.-M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. arXiv:math.DG/0607559

  9. Danielli, D., Garofalo, N., Nhieu, D.-M., Pauls, S.: Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group \({\mathbb{H}}^1\) . arXiv:math.DG/0608516. Am. J. Math. (to appear)

  10. Derridj M. (1972). Sur un thórème de traces. Ann. Inst. Fourier Grenoble 22(2): 73–83

    MathSciNet  Google Scholar 

  11. Giaquinta M. and Hildebrandt S. (1996). Calculus of Variations I, II, Grundlehren der Mathematischen Wissenschaften, no. 310, 311. Springer, Berlin

    Google Scholar 

  12. Gromov, M.: Carnot–Carathéodory spaces seen from within, Sub-riemannian geometry, Prog. Math., vol 144, pp. 79–323. Birkhäuser, Basel (1996)

  13. Hladky, R.K., Pauls, S.: Constant mean curvature surfaces in sub-Riemannian geometry. arXiv:math. DG/059636

  14. Hsiang W.-Y. (1982). On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J. 49(3): 485–496

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi S. and Nomizu K. (1996). Foundations of Differential Geometry, vol. I. Wiley Classics Library, Wiley, New York

    Google Scholar 

  16. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI (2002)

  17. Pansu, P.: An isoperimetric inequality on the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), 159–174 (1984). Conference on differential geometry on homogeneous spaces (Turin, 1983)

  18. Pauls S.D. (2004). Minimal surfaces in the Heisenberg group. Geom. Dedicata 104: 201–231

    Article  MATH  MathSciNet  Google Scholar 

  19. Pimentel, F.A.: A proof of the Lawson conjecture for minimal tori embedded in \({\mathbb{S}}^{3}\) . arXiv:math.DG/ 0703136

  20. Ritoré M. and Rosales C. (2006). Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group \({\mathbb{H}}^n\) J. Geom. Anal. 16(4): 703–720

    MATH  MathSciNet  Google Scholar 

  21. Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \({\mathbb{H}}^1\) . arXiv:math.DG/0512547 (2006)

  22. Shcherbakova, N.: Minimal surfaces in contact Sub-Riemannian manifolds. arXiv:math.DG/0604494

  23. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University Centre for Mathematical Analysis, Canberra (1983)

  24. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986). Corrections to “Sub-Riemannian geometry”. J. Differ. Geom. 30(2), 595–596 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rosales.

Additional information

A. Hurtado has been partially supported by MCyT-Feder research project MTM2004-06015-C02-01.

C. Rosales has been supported by MCyT-Feder research project MTM2004-01387.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado, A., Rosales, C. Area-stationary surfaces inside the sub-Riemannian three-sphere. Math. Ann. 340, 675–708 (2008). https://doi.org/10.1007/s00208-007-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0165-4

Mathematics Subject Classification (2000)

Navigation