Skip to main content
Log in

Eta-invariants, torsion forms and flat vector bundles

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We present a new proof, as well as a C/Q extension (and also certain C/Z extension), of the Riemann–Roch–Grothendieck theorem of Bismut–Lott for flat vector bundles. The main techniques used are the computations of the adiabatic limits of η-invariants associated to the so-called sub-signature operators. We further show that the Bismut–Lott analytic torsion form can be derived naturally from transgressions of η-forms appearing in the adiabatic limit computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Atiyah M.F., Hirzebruch F. (1959). Riemann-Roch theorems for differentiable manifolds. Bull. Am. Math. Soc. 65: 276–281

    Article  MATH  MathSciNet  Google Scholar 

  2. Atiyah M.F., Patodi V.K., Singer I.M. (1975). Spectral asymmetry and Riemannian geometry I. Proc. Camb. Philos. Soc. 77: 43–69

    MATH  MathSciNet  Google Scholar 

  3. Atiyah M.F., Patodi V.K., Singer I.M. (1975). Spectral asymmetry and Riemannian geometry II. Proc. Camb. Philos. Soc. 78: 405–432

    Article  MATH  MathSciNet  Google Scholar 

  4. Atiyah M.F., Patodi V.K., Singer I.M. (1976). Spectral asymmetry and Riemannian geometry III. Proc. Camb. Philos. Soc. 79: 71–99

    MATH  MathSciNet  Google Scholar 

  5. Berline N., Getzler E., Vergne M. (1992). Heat kernels and the Dirac operator. Grundl, Math. Wiss. 298. Springer, Berlin

    Google Scholar 

  6. Berthomieu A., Bismut J.-M. (1994). Quillen metric and higher analytic torsion forms. J. Reine Angew. Math. 457: 85–184

    MATH  MathSciNet  Google Scholar 

  7. Bismut J.-M. (1986). The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83: 91–151

    Article  MATH  MathSciNet  Google Scholar 

  8. Bismut, J.-M.: Local index theory, eta invariants and holomorphic torsion: a survey. Surveys in Differential Geometry, Vol. III, International Press, Boston, MA, pp 1–76 (1998)

  9. Bismut, J.-M.: Eta invariants, differential characters and flat vector bundles. With an Appendix by K. Corlette and H. Esnault. Preprint, 1995. Chinese Ann. Math. Ser. B 26(1), 15–44 (2005)

  10. Bismut J.-M., Cheeger J. (1989). η-invariants and their adiabatic limits. J. Am. Math. Soc. 2: 33–70

    Article  MATH  MathSciNet  Google Scholar 

  11. Bismut J.-M., Freed D.S. (1986). The analysis of elliptic families, II. Commun. Math. Phys. 107: 103–163

    Article  MATH  MathSciNet  Google Scholar 

  12. Bismut J.-M., Lott J. (1995). Flat vector bundles, direct images and higher real analytic torsion. J. Am. Math. Soc. 8: 291–363

    Article  MATH  MathSciNet  Google Scholar 

  13. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. Astérisque, tom. 205, Paris (1992)

  14. Bloch S., Esnault H. (1997). Algebraic Chern-Simons theory. Am. J. Math. 119(4): 903–952

    Article  MATH  MathSciNet  Google Scholar 

  15. Bloch S., Esnault H. (2000). A Riemann-Roch theorem for flat bundles, with values in the algebraic Chern-Simons theory. Ann. Math. (2) 151(3): 1025–1070

    Article  MATH  MathSciNet  Google Scholar 

  16. Bunke, U.: Index theory, eta forms, and Deligne cohomology. Preprint, math.DG/0201112

  17. Bunke, U., Ma, X.: Index and secondary index theory for flat bundles with duality. In: Gil Juan et al. (Eds.) Aspects of Boundary Problems in analysis and geometry. A volume of advances in partial differential equations. Birkhäuser, Basel. Oper. Theory, Adv. Appl. 151, 265–341 (2004)

  18. Bunke, U., Schick, T.: Smooth K-theory. Preprint, arXiv:0707.0046

  19. Cheeger, J., Simons, J.: Differential characters and geometric invariants. in Lecture Notes in Math. Vol. 1167, pp. 50–80. Springer, Berlin (1985)

  20. Dai X. (1991). Adiabatic limits, non multiplicativity of signature and Leray spectral sequence. J. Am. Math. Soc. 4: 265–321

    Article  MATH  Google Scholar 

  21. Dwyer W., Weiss M., Williams B. (2003). A parametrized index theorem for the algebraic K-theory Euler class. Acta Math. 190: 1–104

    Article  MATH  MathSciNet  Google Scholar 

  22. Esnault H. (1992). Characteristic classes of flat bundles II. K-Theory 6(1): 45–56

    Article  MATH  MathSciNet  Google Scholar 

  23. Esnault, H.: Algebraic differential characters. Regulators in Analysis, Geometry and Number Theory, pp. 89–115, Progress in Mathematics, 171, Birkhäuser, Boston, MA (2000)

  24. Esnault, H.: Characteristic classes of flat bundles and determinant of the Gauss-Manin connection. Proc. ICM2002, Vol. II, pp. 471–481, Higher Education Press, Beijing (2002)

  25. Lott J. (1994). R/Z-index theory. Commun. Anal. Geom. 2: 279–311

    MATH  MathSciNet  Google Scholar 

  26. Ma X. (2002). Functoriality of real analytic torsion forms. Israel J. Math. 131: 1–50

    MATH  MathSciNet  Google Scholar 

  27. Quillen D. (1986). Superconnections and the Chern character. Topology 24: 89–95

    MathSciNet  Google Scholar 

  28. Ray D.B., Singer I.M. (1971). R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7: 145–210

    Article  MATH  MathSciNet  Google Scholar 

  29. Soulé, C.: Classes caractéristiques secondaires des fibrés plats. Séminaire Bourbaki, Vol. 1995/96. Astérisque No. 241 (1997), Exp. No. 819, 5, 411–424 (1997)

  30. Zhang W. (2004). Sub-signature operators, η-invariants and a Riemann-Roch theorem for flat vector bundles. Chin. Ann. Math. 25B: 7–36

    Article  Google Scholar 

  31. Zhang W. (1996). Sub-signature operators and a local index theorem for them (in Chinese). Chin. Sci. Bull. 41: 294–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Zhang, W. Eta-invariants, torsion forms and flat vector bundles. Math. Ann. 340, 569–624 (2008). https://doi.org/10.1007/s00208-007-0160-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0160-9

Keywords

Navigation