Skip to main content
Log in

Characterization of splitting for Fréchet–Hilbert spaces via interpolation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Based on the methods from interpolation theory we give a characterization of pairs (E, F) of Fréchet-Hilbert spaces so that for each Fréchet–Hilbert space G each short exact sequence \(0 \rightarrow F \rightarrow G \rightarrow E \rightarrow 0\) splits. This characterization essentially depends on a key condition (S) of an interpolation nature. An equivalent description of (S) in terms of appropriate families of interpolation functions for Fré spaces is presented. We also define and study general variants of interpolation type of some well known linear topological invariants. As an application we obtain an extension of the well known (DN)–(Ω) splitting theorem of Vogt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Apiola H. (1983). Characterization of subspaces and quotients of nuclear L f (α, ∞)-spaces. Compos. Math. 50: 65–81

    MATH  MathSciNet  Google Scholar 

  2. Bierstone E., Milman P. (1987). Local analytic invariants and splitting theorems in differential analysis. Isr. J. Math. 60: 257–280

    MATH  MathSciNet  Google Scholar 

  3. Bierstone E., Schwarz G.W. (1983). Continuous linear division and extension of C functions. Duke Math. J. 50: 233–271

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonet J., Domański P. (2006). Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230: 329–381

    Article  MATH  MathSciNet  Google Scholar 

  5. Brudnyĭ Yu.A., Krugljak N.Ya. (1991). Interpolation Functors and Interpolation Spaces, vol. 1. Amsterdam, North-Holland

    MATH  Google Scholar 

  6. Defant A., Domański P., Mastyło M. (1999). Extensions and splitting theorems for Fréchet spaces of type 2. Rev. Mat. Comput. 12: 325–337

    MATH  Google Scholar 

  7. Domański P., Frerick L., Vogt D. (2003). Fréchet quotients of spaces of real analytic functions. Studia Math. 159: 229–245

    MATH  MathSciNet  Google Scholar 

  8. Domański P., Vogt D. (2000). A splitting theory for the space of distributions. Studia Math. 140: 57–77

    MATH  MathSciNet  Google Scholar 

  9. Domański P., Vogt D. (2000). Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522: 63–79

    MATH  MathSciNet  Google Scholar 

  10. Domański P., Vogt D. (2000). The space of real analytic functions has no basis. Studia Math. 142: 187–200

    MATH  MathSciNet  Google Scholar 

  11. Dunford N., Schwartz J.T. (1963). Linear operators, vol. II. Spectral Theory. Interscience, New York

    Google Scholar 

  12. Frerick L. (1996). A splitting theorem for nuclear Fréchet spaces. In: Dierolf, S., Domański, P., Dineen, S. (eds) Functional Analysis. Proceedings of the First International Workshop held at Trier University, pp 165–167. Walter de Gruyter, Berlin

    Google Scholar 

  13. Frerick L., Wengenroth J. (1996). A sufficient condition for the vanishing of the derived projective limit functor. Arch. Math. 67: 296–301

    Article  MATH  MathSciNet  Google Scholar 

  14. Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-space sampler. Lond. Math. Soc. Lect. Notes 89 (1985)

  15. Kalton, N.J., Pełczyński, A.: Kernels of surjections from \(\mathcal{L}_{1}\) -spaces with an application to Sidon set. Math. Ann. 309, 135–158 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krone, J.: Zur topologischen Charakterisierung von Unter- und Quotientenräumen spezielle, nuklearer Kötheräume mit Splittingmethode. Thesis, Wuppertal (1984)

  17. Langenbruch M. (2004). Characterization of surjective partial differential operators on spaces of real analytic functions. Studia Math. 162: 53–96

    Article  MATH  MathSciNet  Google Scholar 

  18. Lozanovskii, G.Ya.: On some Banach lattices IV, Sibirsk. Math. Z. 14, 140–155 (1973) (in Russian); English transl. in Siberian Math. J. 14, 97–108 (1973)

  19. Meise R., Taylor B.A., Vogt D. (1990). Characterisation of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse. Ann. Inst. Fourier (Grenoble) 40: 619–655

    MATH  MathSciNet  Google Scholar 

  20. Meise R., Vogt D. (1985). A characterization of quasi-normable Fréchet spaces. Math. Nachr. 122: 141–150

    Article  MATH  MathSciNet  Google Scholar 

  21. Meise R., Vogt D. (1997). Introduction to Functional Analysis. Clarendon, Oxford

    MATH  Google Scholar 

  22. Ovchinnikov V.I. (1984). The methods of orbits in interpolation theor. Math. Rep. 1: 349–516

    MathSciNet  Google Scholar 

  23. Ovchinnikov V.I. (1998). Coherently nuclear operators in pairs of Hilbert spaces. Math. Z 63(6): 866–872

    MathSciNet  Google Scholar 

  24. Vogt D. (1977). Charakterisiering der Unterräume von s. Math. Z. 155: 109–117

    Article  MATH  MathSciNet  Google Scholar 

  25. Vogt D. (1984). Some results on continuous linear maps between Fréchet spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds) Functional Analysis: Surveys and Recent Results III, pp 349–381. North-Holland, Amsterdam

    Google Scholar 

  26. Vogt D. (1987). On the functors Ext1 (E, F) for Fréchet spaces. Studia Math. 85: 163–197

    MathSciNet  Google Scholar 

  27. Vogt, D.: Interpolation of nuclear operators and a splitting theorem for exact sequences of Fréchet spaces. Preprint

  28. Vogt D. (1996). Tame splitting pairs of type 0 and 1. In: Dierolf, S., Dineen, S., Domański, P. (eds) Functional Analysis (Proc. Conf. Trier 1994), pp 421–448. Walter de Gruyter, Berlin

    Google Scholar 

  29. Vogt D., Wagner M.J. (1980). Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau. Studia Math. 63: 225–240

    MathSciNet  Google Scholar 

  30. Wengenroth J. (2003). Derived Functors in Functional Analysis. Lecture Notes Math, vol. 1810. Springer, Berlin

    Google Scholar 

  31. Zaharjuta V.P. (1994). Spaces of analytic functions and complex potential theory. In: Aytuna, A. (eds) Linear Topological Spaces and Complex Analysis 1, pp 74–146. METU-TÜB ITAK, Ankara

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczysław Mastyło.

Additional information

The work of the first author was supported by Committee of Scientific Research (KBN), Poland, grant P03A 022 25. The work of the second author was supported by Committee of Scientific Research (KBN), Poland, grant P03A 013 26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domański, P., Mastyło, M. Characterization of splitting for Fréchet–Hilbert spaces via interpolation. Math. Ann. 339, 317–340 (2007). https://doi.org/10.1007/s00208-007-0115-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0115-1

Mathematics Subject Classification (2000)

Navigation