Skip to main content
Log in

Twistor spaces and spinors over loop spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper two natural twistor spaces over the loop space of a Riemannian manifold are constructed and their equivalence is shown in the Kählerian case. This relies on a detailed study of frame bundles of loop spaces on the one hand and, on the other hand, on an explicit local trivialization of the Atiyah operator family [defined in Atiyah (SMF 131:43–59, 1985)] associated to a loop space. We relate these constructions to the Dixmier-Douady obstruction class against the existence of a string structure, as well as to pseudo - line bundle gerbes in the sense of Brylinski (Loop spaces, characteristic classes and geometric quantization. Birkhäuser, Basel, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Circular symmetry and stationary phase approximation, In: Colloque en l’honneur de L. Schwartz, vol.I, Astérisque vol. 131, SMF, pp. 43–59 (1985)

  2. Atiyah M.F., Singer I. (1969). Index theory for skew-adjoint Fredholm operators. I.H.E.S. Publ. Math. 37: 5–26

    MATH  MathSciNet  Google Scholar 

  3. Baez J.C., Segal I.E., Zhou Z.-F. (1992). Introduction to algebraic and constructive quantum field theory. Princeton University Press, Princeton NJ

    MATH  Google Scholar 

  4. Booß-Bavnbek B., Wojciechowski K.P. (1993). Elliptic boundary problems for Dirac operators. Birkhäuser, Boston

    MATH  Google Scholar 

  5. Brylinski J.L. (1993). Loop spaces, characteristic classes and geometric quantization. Birkhäuser, Basel

    MATH  Google Scholar 

  6. Brylinski J.L., Maclaughlin D. (1994). The geometry of degree-four characteristic classes and of line bundles on loop spaces I. Duke Math. J. 75: 603–638

    Article  MATH  MathSciNet  Google Scholar 

  7. Bunke, U.: Private communication

  8. Carey A.L., Mickelsson J. (2000). A gerbe obstruction to quantization of fermions on odd-dimensional manifolds with boundary. Lett. Math. Phys. 51: 145–160

    Article  MATH  MathSciNet  Google Scholar 

  9. Carey A.L., Mickelsson J. (2002). The universal gerbe, Dixmier-Douady class and gauge theory. Lett. Math. Phys. 59: 47–60

    Article  MATH  MathSciNet  Google Scholar 

  10. Carey A.L., Murray M.K. (1991). String structures and the path fibration of a group. Comm. Math. Phys. 141(3): 441–452

    Article  MATH  MathSciNet  Google Scholar 

  11. Coquereaux R., Pilch K. (1989). String structures on loop bundles. Commun.Math. Phys. 120: 353–378

    Article  MATH  MathSciNet  Google Scholar 

  12. Dold A. (1963). Partitions of unity in the theory of fibrations. Ann. Math. 2(78): 223–255

    Article  MathSciNet  Google Scholar 

  13. Dubois-Violette, M.: Structures complexes au-dessus des variétés, applications, In: Mathematics and physics (Paris, 1979-1982), Prog. Math. 37, Birkhäuser, Boston, MA, pp. 1–42 (1983)

  14. Dunford N., Schwartz J.T. (1958). Linear operators. I. general theory. Interscience Publishers, New York

    MATH  Google Scholar 

  15. Gotay M., Lashof R., Śniatycki J., Weinstein A. (1983). Closed forms on symplectic fibre bundles. Comm. Math. Helv. 58: 617–621

    Article  MATH  Google Scholar 

  16. Guillemin, V., Sternberg, S.: Geometric asymptotics, AMS, Providence, RI (1977)

  17. Hamilton R.S. (1982). The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1): 65–222

    MATH  MathSciNet  Google Scholar 

  18. Hirsch N.W. (1976). Differential topology. Springer, New York

    MATH  Google Scholar 

  19. Hitchin, N.: Lectures on special Lagrangian submanifolds, In: Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math., vol. 23, Amer. Math. Soc., Providence, RI, pp. 151–182 (2001)

  20. Killingback T. (1987). World-sheet anomalies and loop geometry. Nucl. Phys. B 288: 578–588

    Article  MathSciNet  Google Scholar 

  21. Lee J.M. (2003). Introduction to smooth manifolds. Springer, New York

    Google Scholar 

  22. Mclaughlin D. (1992). Orientations and string structures on loop spaces. Pac. J. Math. 155:   143–156

    MATH  MathSciNet  Google Scholar 

  23. Mickelsson, J.: Gerbes, (twisted) K-theory, and the supersymmetric WZW model, In: Infinite dimensional groups and manifolds, Wurzbacher, T. (ed.), De Gruyter, Berlin and New York, pp. 93–107 (2004)

  24. Neeb, K.-H.: Borel-Weil theory for loop groups, In: Infinite dimensional Kähler manifolds (Oberwolfach, 1995), Huckleberry, A.T., Wurzbacher, T. (eds.), DMV Sem., 31, Birkhäuser, Basel, pp. 179–229 (2001)

  25. Neeb, K.-H.: Classical Hilbert-Lie groups, their extensions and their homotopy groups, In: Geometry and analysis on finite- and infinite-dimensional Lie groups (Bedlewo, 2000), Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W. (Eds.), Banach Center Publ. 55, Polish Acad. Sci., Warsaw, pp. 87–151 (2002)

  26. O’Brian N.R., Rawnsley J.H. (1985). Twistor spaces. Ann. Global Anal. Geom. 3: 29–58

    Article  MATH  MathSciNet  Google Scholar 

  27. Palais R. (1965). On the homotopy type of certain groups of operators. Topology 3: 271–279

    Article  MATH  MathSciNet  Google Scholar 

  28. Plymen R.J., Robinson P.L. (1994). Spinors inHilbert space. Cambridge University Press, Cambridge

    Google Scholar 

  29. Pressley A., Segal G. (1986). Loop groups. Oxford University Press, Oxford

    MATH  Google Scholar 

  30. Reed M., Simon B. (1972). Methods of modern mathematical physics. Functional analysis, Academic, London

    MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of modern mathematical physics. Fourier analysis, self-adjointness. Academic, London (1975)

  32. Segal, G.: Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others), In: Séminaire Bourbaki, vol. 1987/88, Astérisque No. 161-162, (1988), Exp. No. 695, 4, 187–201

  33. Shale D., Stinespring W.F. (1965). Spinor representations of infinite orthogonal groups. J. Math. Mech. 14: 315–322

    MATH  MathSciNet  Google Scholar 

  34. Spera M., Valli G. (1994). Plücker embedding of the Hilbert space Grassmannian and the CAR algebra. Russ. J. Math. Physics 2: 383–392

    MATH  MathSciNet  Google Scholar 

  35. Spera M., Wurzbacher T. (1998). Determinants, Pfaffians and quasi-free representations of the CAR algebra. Rev. Math. Phys. 10(5): 705–721

    Article  MATH  MathSciNet  Google Scholar 

  36. Spera M., Wurzbacher T. (2003). The Dirac-Ramond operator on loops in flat space. J. Funct. Analysis 197: 110–139

    Article  MATH  MathSciNet  Google Scholar 

  37. Spera, M., Wurzbacher, T.: Good coverings and smooth partitions of unity for mapping spaces (in preparation)

  38. Stolz, S., Teichner, P.: Lectures at the workshop: some topics in conformal field theory. Münster University, 4–8 March (2002)

  39. Stolz, S., Teichner, P.: What is an elliptic object? In: Topology, geometry and quantum field theory. Proceedings of the 2002 Oxford Symposium in the Honour of the 60th Birthday of Graeme Segal, Tillmann, U. (ed.), Cambridge University Press, Cambridge, pp. 247–343 (2004)

  40. Wassermann A. (1998). Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3): 467–538

    Article  MATH  MathSciNet  Google Scholar 

  41. Wurzbacher T. (1995). Symplectic geometry of the loop space of a Riemannian manifold. J. Geom. Phys. 16(4): 345–384

    Article  MATH  MathSciNet  Google Scholar 

  42. Wurzbacher, T.: Fermionic second quantization, In: Infinite dimensional Kähler manifolds (Oberwolfach, 1995), DMV Sem., 31, Birkhäuser, Basel, pp. 287–375 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Wurzbacher.

Additional information

The first author is partially supported by M.I.U.R., L.M.A.M. The second author is partially supported by I.N.d.A.M.-G.N.S.A.G.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spera, M., Wurzbacher, T. Twistor spaces and spinors over loop spaces. Math. Ann. 338, 801–843 (2007). https://doi.org/10.1007/s00208-007-0085-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0085-3

Mathematics Subject Classification (2000)

Navigation