Skip to main content

Products of Bergman space Toeplitz operators on the polydisk

Abstract

Motivated by recent works of Ahern and \(\breve{\rm C}\)u\(\breve{\rm C}\)ković on the disk, we study the generalized zero product problem for Toeplitz operators acting on the Bergman space of the polydisk. First, we extend the results to the polydisk. Next, we study the generalized compact product problem. Our results are new even on the disk. As a consequence on higher dimensional polydisks, we show that the generalized zero and compact product properties are the same for Toeplitz operators in a certain case.

This is a preview of subscription content, access via your institution.

References

  1. Ahern P. (2004) On the range of the Berezin transform. J. Funct. Anal. 215, 206–216

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahern P., \(\breve{\rm C}\)u\(\breve{\rm C}\)ković Ž (2001) A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J. Funct. Anal. 187, 200–210

    Google Scholar 

  3. Axler S, Zheng D. (1998) Compact operators via the Berezin transform. Indiana Univ. Math. J. 47, 387–400

    Article  MATH  MathSciNet  Google Scholar 

  4. Choe B.R., Koo H., Lee Y.J. (2004) Commuting Toeplitz operators on the polydisk. Trans. Am. Math. Soc. 356, 1727–1749

    Article  MATH  MathSciNet  Google Scholar 

  5. Coburn L. (2005) A Lipschitz estimate for Berezin’s operator calculus. Proc. Am. Math. Soc. 133, 127–131

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding X., Tang S. (2001) The pluriharmonic Toeplitz opertors on the polydisk. J. Math. Anal. Appl. 254, 233–246

    Article  MATH  MathSciNet  Google Scholar 

  7. Englis M. (1999) Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integr. Equ. Oper. Theory 33, 426–455

    Article  MATH  MathSciNet  Google Scholar 

  8. Gu C., Zheng D. (1997) The semi-commutator of Toeplitz operators on the bidisc. J. Oper. Theory 38, 173–193

    MATH  MathSciNet  Google Scholar 

  9. Krantz S.G. (1982) Function Theory of Several Complex Variables. Wiley, New York

    MATH  Google Scholar 

  10. McDonald G., Sundberg C. (1979) Toeplitz operators on the disk. Indiana Univ. Math. J. 28, 595–611

    Article  MATH  MathSciNet  Google Scholar 

  11. Nam K., Zheng D. m-Berezin transform on the polydisk. Integr. Equ. Oper. Theory (to appear) (2006)

  12. Rudin W. (1969) Function theory in polydiscs. W. A. Benjamin, Reading

    MATH  Google Scholar 

  13. Stroethoff K. (1998) Compact Toeplitz operators on Bergman spaces. Math. Proc. Camb. Philos. Soc. 124, 151–160

    Article  MATH  MathSciNet  Google Scholar 

  14. Suárez D. (2004) Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam. 20, 563–610

    MATH  Google Scholar 

  15. Sun S., Zheng D. (1996) Toeplitz operators on the polydisk. Proc. Am. Math. Soc. 124, 3351–3356

    Article  MATH  MathSciNet  Google Scholar 

  16. Zheng D. (1989) Hankel operators and Toeplitz operators on the Bergman space. J. Funct. Anal. 83, 98–120

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu K. (1990) Operator theory in function spaces. Marcel Dekker, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechao Zheng.

Additional information

The first three authors were partially supported by KOSEF(R01-2003-000-10243-0) and the last author was partially supported by the National Science Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choe, B.R., Lee, Y.J., Nam, K. et al. Products of Bergman space Toeplitz operators on the polydisk. Math. Ann. 337, 295–316 (2007). https://doi.org/10.1007/s00208-006-0034-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0034-6

Mathematics Subject Classification (2000)

  • Primary 47B35
  • Secondary 32A36