Abstract.
We consider surfaces Z homeomorphic to the plane with complete, possibly singular Riemannian metrics. If we have ∫ Z K +<2π−ε for the positive and ∫ Z K −<C for the negative part of the integral curvature, then Z is L-bi-Lipschitz equivalent to ℝ2 with L depending only on ε>0 and C>0. This result implies a conjecture by J. Fu.
This is a preview of subscription content, access via your institution.
References
Aleksandrov, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces. AMS Transl. Math. Monographs, Vol. 15, Providence, RI, 1967
Bangert, V.: Geodesics and totally convex sets on surfaces. Invent. Math. 63, 507–517 (1981)
Bangert, V.: On the existence of escaping geodesics. Comment. Math. Helvetici 56, 59–65 (1981)
Bonk, M., Eremenko, A.: Uniformly hyperbolic surfaces. Indiana Univ. Math. J. 49, 61–80 (2000)
Bonk, M., Heinonen, J., Saksman, E.: The quasiconformal Jacobian problem. Preprint
Cohn-Vossen, St.: Kürzeste Wege und Totalkrümmung auf Flächen. Compositio Math. 2, 69–133 (1935)
Fu, J.H.G.: Bi-Lipschitz rough normal coordinates for surfaces with an L 1 curvature bound. Indiana Univ. Math. J. 47, 439–453 (1998)
Gullemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Englewood Cliffs, N.J., 1974
Huber, A.: Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie. Comment. Math. Helv. 34, 99–126 (1960)
Huber, A.: Vollständige konforme Metriken und isolierte Singularitäten subharmonischer Funktionen. Comment. Math. Helv. 41, 105–136 (1960)
Milnor, J.: A problem in cartography. Amer. Math. Monthly 76, 1101–1112 (1969)
Müller, S., Šverák, V.: On surfaces of finite total curvature. J. Differential Geom. 42, 229–258 (1995)
Reshetnyak, Y.G.: Two-dimensional manifolds of bounded curvature. pp. 3–163. In: Y.G. Reshetnyak (Ed.), Geometry IV, Encyclopaedia of Math. Sci., Vol. 70, Springer 1993
Semmes, S.: Hypersurfaces in ℝn whose normal has small BMO norm. Proc. Amer. Math. Soc. 112, 403–412 (1991)
Semmes, S.: Bi-Lipschitz mappings and strong A ∞ weights. Ann. Acad. Sci. Fenn. Ser. A I Math. 18, 211–248 (1993)
Semmes, S.: On the nonexistence of bilipschitz parameterizations and geometric problems about A ∞-weights. Rev. Mat. Iberoamer. 12, 337–410 (1996)
Toro, T.: Surfaces with generalized second fundamental form in L 2 are Lipschitz manifolds. J. Differential Geom. 39, 65–101 (1994)
Toro, T.: Geometric conditions and existence of bi-Lipschitz parameterizations. Duke Math. J. 77, 193–227 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by NSF grant DMS-0200566.
Rights and permissions
About this article
Cite this article
Bonk, M., Lang, U. Bi-Lipschitz parameterization of surfaces. Math. Ann. 327, 135–169 (2003). https://doi.org/10.1007/s00208-003-0443-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-003-0443-8