Skip to main content
Log in

Boyarsky–Meyers Estimate for Solutions to Zaremba Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The variational solution to the Zaremba problem for a divergent linear second order elliptic equation with measurable coefficients is considered. The problem is set in a local Lipschitz graph domain. An estimate in \(L_{2+\delta }\), \(\delta >0\), for the gradient of a solution, is proved. An example of the problem with the Dirichlet data supported by a fractal set of zero \((n-1)\)-dimensional measure and non-zero p-capacity, \(p>1\) is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Chechkin, G.A.: On boundary value problems for a second-order elliptic equation with oscillating boundary conditions (Russian). In: Vragov, V.N. (ed.) Nonclassical Partial Differential Equations, pp. 95–104. IM SOAN SSSR Press, Novosibirsk, 1988

  2. Chechkin, G.A., Piatnitski, A.L., Shamaev, A.S.: Homogenization. Methods and Applications. Translations of Mathematical Monographs, vol. 234. AMS, Providence, 2007

  3. Zaremba, S.: Sur un problème mixte relatif à l’équation de Laplace (French). Bulletin de l’Académie des sciences de Cracovie, Classe des sciences mathématiques et naturelles, serie A, 313–344, 1910

  4. Fichera, G.: Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico (Italian). Rev. Roumaine Math. Pures Appl. 9, 3–9, 1964

    MathSciNet  MATH  Google Scholar 

  5. Maz’ya, V.G.: Some estimates of solutions of second-order elliptic equations (Russian). Dokl. Akad. Nauk SSSR 137(5), 1057–1059, 1961

    MathSciNet  Google Scholar 

  6. Kerimov, T.M., Maz’ya, V.G., Novruzov, A.A.: A criterion for the regularity of the infinitely distant point for the Zaremba problem in a half-cylinder (Russian). Z. Anal. Anwendungen 7(2), 113–125, 1988

    Article  MathSciNet  Google Scholar 

  7. Maz’ya, V.G.: Boundary Behavior of Solutions to Elliptic Equations in General Domains. EMS Tracts in Mathematics, vol. 30. EMS Publishing House, Zürich, 2018

  8. Bojarski, B.V.: Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian). Mat. Sb. N.S. 43(85), 451–503, 1957

    MathSciNet  Google Scholar 

  9. Meyers, N.G.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic deivergence equations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3-e série 17(3), 189–206, 1963

    MATH  Google Scholar 

  10. Zhikov, V.V.: On some variational problems. Russian J. Math. Phys. 5(1), 105–116, 1997

    MathSciNet  MATH  Google Scholar 

  11. Breit, D., Cianchi, A., Diening, L., Kuusi, T., Schwarzacher, S.: Pointwise Calderón-Zygmund gradient estimates for the \(p\)-Laplace system. J. Math. Pures Appl. 114, 146–190, 2018

    Article  MathSciNet  Google Scholar 

  12. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacian system. J. Reine Angew. Math. 584, 117–148, 2005

    Article  MathSciNet  Google Scholar 

  13. Diening, L., Schwarzsacher, S.: Global gradient estimates for the \(p(\cdot )\)-Laplacian. Nonlinear Anal. 106, 70–85, 2014

    Article  MathSciNet  Google Scholar 

  14. Alkhutov, Yu.A., Chechkin, G.A.: Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation. Russian Academy of Sciencies. Doklady Mathematics 103(2), 69–71, 2021 (Translated from Doklady Akademii Nauk 497(2), 3–6, 2021)

  15. Chechkin, G.A.: The Meyers estimates for domains perforated along the boundary. Mathematics 9(23), Art number 3015, 2021

  16. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer-Verlag, Berlin, 2011

  17. Caccioppoli, R.: Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali (Italian). Giorn. Mat. Battaglini 80, 186–212, 1950–1951

  18. Gehring, F.W.: The \(L_p\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277, 1973

    Article  MathSciNet  Google Scholar 

  19. Giaquinta, M., Modica, G.: Regularity results for some classes of higher order nonlinear elliptic systems. Journ. für die reine und angewandte Math. 311/312, 145–169, 1979

    MathSciNet  MATH  Google Scholar 

  20. Skrypnik, I.V.: Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Translations of Math. Monographs, vol. 139. AMS, Providence, 1994

  21. Il’in, V.P.: On a imbedding theorem for limiting exponent (Russian). Dokl. Akad. Nauk SSSR 96, 905–908, 1954

    Google Scholar 

  22. Adams, D.R., Meyers, N.G.: Thinness and Wiener criteria for nonlinear potentials. Indiana Univ. Math. J. 22, 139–158, 1972

    Article  MathSciNet  Google Scholar 

  23. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin, 1996

  24. Sjödin, T.: Capacities of compact sets in linear subspaces of \(\mathbb{R}^n\). Pac. J. Math. 78, 261–266, 1978

    Article  Google Scholar 

  25. Maz’ya, V.G., Havin, V.P.: A nonlinear analogue of the Newtonian potential, and metric properties of \((p,\, l)\)-capacity (Russian). Dokl. Akad. Nauk SSSR 194, 770–773, 1970

    MathSciNet  Google Scholar 

  26. Maz’ya, V.G., Havin, V.P.: Nonlinear potential theory (Russian). Russ. Math. Surv. 27, 71–148, 1972 (Translated from Usp. Mat. Nauk 27, 67–138, 1972)

Download references

Acknowledgements

The work of Yurij A. Alkhutov in Section 3 was supported in part by RSF (Project 22-21-00292). The work of Gregory A. CHECHKIN in Section 2 was supported in part by RSF (Project 20-11-20272). The Vladimir G. Maz’ya was supported by the RUDN University Strategic Academic Leadership Program.

Funding

RSF (project 22-21-00292), RSF (project 20-11-20272), RUDN University Strategic Academic Leadership Program

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory A. Chechkin or Vladimir G. Maz’ya.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by D. Kinderlehrer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhutov, Y.A., Chechkin, G.A. & Maz’ya, V.G. Boyarsky–Meyers Estimate for Solutions to Zaremba Problem. Arch Rational Mech Anal 245, 1197–1211 (2022). https://doi.org/10.1007/s00205-022-01805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01805-0

Navigation