Skip to main content
Log in

Automatic Quasiconvexity of Homogeneous Isotropic Rank-One Convex Integrands

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This article has been updated

Abstract

We consider the class of non-negative rank-one convex isotropic integrands on \(\mathbb {R}^{n\times n}\) which are also positively p-homogeneous. If \(p\le n=2\) we prove, conditional on the quasiconvexity of the Burkholder integrand, that the integrands in this class are quasiconvex at conformal matrices. If \(p\ge n =2\), we show that the positive part of the Burkholder integrand is polyconvex. In general, for \(p\ge n\), we prove that the integrands in the above class are polyconvex at conformal matrices. Several examples imply that our results are all nearly optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 September 2022

    Missing pagination has been added to the article.

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145, 1984

    Article  MathSciNet  MATH  Google Scholar 

  2. Alibert, J.J., Dacorogna, B.: An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Ration. Mech. Anal. 117(2), 155–166, 1992

    Article  MathSciNet  MATH  Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48). Princeton University Press, 2009

  4. Astala, K., Iwaniec, T., Prause, I., Saksman, E.: Burkholder integrals, Morrey’s problem and quasiconformal mappings. J. Am. Math. Soc. 25(2), 507–531, 2012

    Article  MathSciNet  MATH  Google Scholar 

  5. Astala, K., Iwaniec, T., Prause, I., Saksman, E.: A hunt for sharp \(L^p\)-estimates and rank-one convex variational integrals. Filomat 29(2), 245–261, 2015

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubert, G.: Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elast. 39(1), 31–46, 1995

    Article  MathSciNet  MATH  Google Scholar 

  7. Baernstein, A., Montgomery-Smith, S.J.: Some conjectures about integral means of \(\partial f\) and \(\bar{\partial } f\) Complex analysis and differential equations (Uppsala, 1997). Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 64:92–109, 1999

  8. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. 1, pp. 187–241. Pitman, London, 1977

  9. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403, 1977

    Article  MathSciNet  MATH  Google Scholar 

  10. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 306(1496), 557–611, 1982

  11. Ball, J.M.: Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51(3), 699–728, 1984

    Article  MathSciNet  MATH  Google Scholar 

  12. Ball, J.M.: Sets of gradients with no rank-one connections. Journal de Mathématiques Pures et Appliquées Math. Pures et Appliquées 69, 241–259, 1990

  13. Ball, J.M., Murat, F.: Remarks on rank-one convexity and quasiconvexity. In B. Sleeman and R. Jarvis, editors, Ordinary and partial differential equations, volume III, pages 25–37. Pitman, 1991

  14. Bañuelos, R., Janakiraman, P.: \(L^p\)-bounds for the Beurling-Ahlfors transform. Trans. Am. Math. Soc. 360(07), 3603–3613, 2008

    Article  MATH  MathSciNet  Google Scholar 

  15. Burkholder, D.L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12(3), 647–702, 1984

    Article  MathSciNet  MATH  Google Scholar 

  16. Burkholder, D.L.: Sharp inequalities for martingales and stochastic integrals. Astérisque 157–158, 75–94, 1988

    MathSciNet  MATH  Google Scholar 

  17. Cardaliaguet, P., Tahraoui, R.: Equivalence between rank-one convexity and polyconvexity for isotropic sets of (Part I). Nonlinear Anal. Theory Methods Appl. 50(8), 1179–1199, 2002

    Article  MATH  Google Scholar 

  18. Cardaliaguet, P., Tahraoui, R.: Equivalence between rank-one convexity and polyconvexity for isotropic sets of (Part II). Nonlinear Anal. Theory Methods Appl. 50(8), 1201–1239, 2002

    Article  MATH  Google Scholar 

  19. Chen, C.Y., Kristensen, J.: On coercive variational integrals. Nonlinear Anal. Theory Methods Appl. 153, 213–229, 2017

    Article  MathSciNet  MATH  Google Scholar 

  20. Conti, S., De Lellis, C., Müller, S., Romeo, M.: Polyconvexity equals rank-one convexity for connected isotropic sets in \(\mathbb{R} ^{2\times 2}\). Comptes Rendus Mathématique 337(4), 233–238, 2003

    Article  MathSciNet  MATH  Google Scholar 

  21. Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete Contin. Dyn. Syst. B 1(2), 257–263, 2001

    MathSciNet  MATH  Google Scholar 

  22. Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Applied Mathematical Sciences. Springer, New York (2007)

    MATH  Google Scholar 

  23. Dacorogna, B., Marcellini, P.: A counterexample in the vectorial calculus of variations. In: Ball, J.M. (ed.) Material Instabilities in Continuum Mechanics, pp. 77–83. Oxford Scientific Publications, Oxford (1988)

    Google Scholar 

  24. Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  25. Dacorogna, B., Maréchal, P.: The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity. J. Convex Anal. 15(2), 271–284, 2008

    MathSciNet  MATH  Google Scholar 

  26. Faraco, D.: Tartar conjecture and Beltrami operators. Michigan Math. J. 52(1), 83–104, 2004

    Article  MathSciNet  MATH  Google Scholar 

  27. Faraco, D., Székelyhidi, L.: Tartar’s conjecture and localization of the quasiconvex hull in \( \mathbb{R} ^{{2 \times 2}} \). Acta Math. 200(2), 279–305, 2008

    Article  MathSciNet  MATH  Google Scholar 

  28. Grabovsky, Y.: From microstructure-independent formulas for composite materials to rank-one convex, non-quasiconvex functions. Arch. Ration. Mech. Anal. 227(2), 607–636, 2018

    Article  MathSciNet  MATH  Google Scholar 

  29. Guerra, A.: Extremal rank-one convex integrands and a conjecture of Šverák. Calc. Var. Part. Differ. Equ. 58(6), 1–19, 2019

    Article  MATH  Google Scholar 

  30. Guerra, A., Koch, L., Lindberg, S.: Energy minimisers with prescribed Jacobian. Arch. Ration. Mech. Anal. 242, 1059–1090, 2021

    Article  MathSciNet  MATH  Google Scholar 

  31. Guerra, A., Teixeira da Costa, R.: Numerical evidence towards a positive answer to Morrey’s problem. Accepted in Revista Matemática Iberoamericana, 2020

  32. Harris, T.L.J., Kirchheim, B., Lin, C.-C.: Two-by-two upper triangular matrices and Morrey’s conjecture. Calc. Var. Part. Differ. Equ. 57(73), 1–12, 2018

    MathSciNet  MATH  Google Scholar 

  33. Iwaniec, T.: Nonlinear Cauchy-Riemann operators in \(\mathbb{R} ^n\). Trans. Am. Math. Soc. 354(5), 1961–1995, 2002

    Article  MATH  MathSciNet  Google Scholar 

  34. Iwaniec, T., Kristensen, J.: A construction of quasiconvex functions. Riv. Mat. Univ. Parma 4(7), 75–89, 2005

    MathSciNet  MATH  Google Scholar 

  35. Iwaniec, T., Lutoborski, A.: Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125(1), 25–79, 1993

    Article  MathSciNet  MATH  Google Scholar 

  36. Iwaniec, T., Lutoborski, A.: Polyconvex functionals for nearly conformal deformations. SIAM J. Math. Anal. 27(3), 609–619, 1996

    Article  MathSciNet  MATH  Google Scholar 

  37. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170(1), 29–81, 1993

    Article  MathSciNet  MATH  Google Scholar 

  38. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Clarendon Press, 2001.

  39. Kirchheim, B., Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221(1), 527–558, 2016

    Article  MathSciNet  MATH  Google Scholar 

  40. Kirchheim, B., Székelyhidi, L.: On the gradient set of Lipschitz maps. Journal für die reine und angewandte Mathematik (Crelles Journal) 2008(625), 215–229, 2008

    Article  MathSciNet  MATH  Google Scholar 

  41. Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63(4), 321–336, 1976

    Article  MathSciNet  MATH  Google Scholar 

  42. Kristensen, J.: On conditions for polyconvexity. Proc. Am. Math. Soc. 128(6), 1793–1797, 2000

    Article  MathSciNet  MATH  Google Scholar 

  43. Martin, R.J., Ghiba, I.D., Neff, P.: Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case. Proc. Roy. Soc. Edinburgh Sect. A Math. 147(3), 571–597, 2017

  44. Meyers, N.G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119(1), 125–149, 1965

    Article  MathSciNet  MATH  Google Scholar 

  45. Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12(2), 291–314, 2005

    MathSciNet  MATH  Google Scholar 

  46. Morrey, C.B.: Quasi-convexity and lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53, 1952

    Article  MathSciNet  MATH  Google Scholar 

  47. Müller, S.: On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41(1), 295–301, 1992

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 1999(20), 1087–1095, 1999

    Article  MathSciNet  MATH  Google Scholar 

  49. Müller, S.: Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems, pp. 85–210. Springer, Berlin, 1999

  50. Müller, S.: Quasiconvexity is not invariant under transposition. Proc. Roy. Soc. Edinburgh Sect. A Math. 130(2), 389–395, 2000

  51. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157(3), 715–742, 2003

    Article  MathSciNet  MATH  Google Scholar 

  52. Müller, S., Šverák, V., Yan, B.: Sharp stability results for almost conformal maps in even dimensions. J. Geom. Anal. 9(4), 671–681, 1999

    Article  MathSciNet  MATH  Google Scholar 

  53. Pedregal, P.: Some remarks on quasiconvexity and rank-one convexity. Proc. Roy. Soc. Edinburgh Sect. A Math. 126(05), 1055–1065, 1996

  54. Pedregal, P., Šverák, V.: A note on quasiconvexity and rank-one convexity for \(2\times 2\) matrices. J. Convex Anal. 5(1), 107–117, 1998

    MathSciNet  MATH  Google Scholar 

  55. Rosakis, P., Simpson, H.C.: On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. J. Elast. 37(2), 113–137, 1994

    Article  MathSciNet  MATH  Google Scholar 

  56. Sebestyén, G., Székelyhidi, L., Jr.: Laminates supported on cubes. J. Convex Anal. 24(4), 1217–1237, 2017

    MathSciNet  MATH  Google Scholar 

  57. Šilhavý, M.: On isotropic rank 1 convex functions. Proc. Roy. Soc. Edinburgh Sect. A Math. 129(5), 1081–1105, 1999

  58. Šilhavý, M.: Differentiability properties of isotropic functions. Duke Math. J. 104(3), 699–728, 2000

    Article  MathSciNet  MATH  Google Scholar 

  59. Šilhavý, M.: An O(n) invariant rank 1 convex function that is not polyconvex. Theoret. Appl. Mech. 106(28–29), 325–336, 2002

    Article  MathSciNet  MATH  Google Scholar 

  60. Šilhavý, M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. Roy. Soc. Edinburgh Sect. A Math. 132(2), 419–435, 2002

  61. Šilhavý, M.: On SO(n)-invariant rank 1 convex functions. J. Elast. 71(1–3), 235–246, 2003

    Article  MathSciNet  MATH  Google Scholar 

  62. Sivaloganathan, J.: Implications of rank one convexity. Annales de l’Institut Henri Poincaré (C) Non Linear Anal. 5(2), 99–118, 1988

  63. Šverák, V.: Examples of rank-one convex functions. Proc. Roy. Soc. Edinburgh Sect. A Math. 114(3–4), 237–242, 1990

  64. Šverák, V.: Quasiconvex functions with subquadratic growth. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 433(1889), 723–725, 1991

  65. Šverák, V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119(4), 293–300, 1992

    Article  MathSciNet  MATH  Google Scholar 

  66. Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A Math. 120(1–2), 185–189, 1992

  67. Voss, J., Martin, R.J., Ghiba, I.D., Neff, P.: Morrey’s conjecture for the planar volumetric-isochoric split. Part I: least convex energy functions. arXiv preprint arXiv:2106.11887, 2021

  68. Yan, B.: On rank-one convex and polyconvex conformal energy functions with slow growth. Roy. Soc. Edinburgh Proc. A 127(3), 651–663, 1997

    Article  MathSciNet  MATH  Google Scholar 

  69. Yan, B., Zhou, Z.: Stability of weakly almost conformal mappings. Proc. Am. Math. Soc. 126(2), 481–489, 1998

    Article  MathSciNet  MATH  Google Scholar 

  70. Yan, B., Zhou, Z.: \(L^p\)-mean coercivity, regularity and relaxation in the calculus of variations. Nonlinear Anal. Theory Methods Appl. 46(6), 835–851, 2001

    Article  MATH  MathSciNet  Google Scholar 

  71. Zhang, K.: A construction of quasiconvex functions with linear growth at infinity. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 19(3), 313–326, 1992

  72. Zhang, K.: On non-negative quasiconvex functions with unbounded zero sets. Proc. Roy. Soc. Edinburgh Sect. A Math. 127(2), 411–422, 1997

Download references

Acknowledgements

A.G. was supported by the Infosys Membership at the Institute for Advanced Study. It is a pleasure to thank Kari Astala and Daniel Faraco for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Guerra.

Additional information

Communicated by I. Fonseca

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, A., Kristensen, J. Automatic Quasiconvexity of Homogeneous Isotropic Rank-One Convex Integrands. Arch Rational Mech Anal 245, 479–500 (2022). https://doi.org/10.1007/s00205-022-01792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01792-2

Navigation