Skip to main content
Log in

Geodesic Rays of the N-Body Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For the Newtonian N-body problem, we study the Jacobi–Maupertuis metric of the nonnegative energy levels. We show that the geodesic rays are expansive, that is to say, all the distances between the bodies must be divergent functions. More precisely, we prove that the evolution of such motions asymptotically decomposes into free particles and subsystems in completely parabolic expansion. The theorem applies, in particular, to the maximal characteristic curves of any given global viscosity solution of the stationary Hamilton–Jacobi equation \(H(x,d_xu)=h\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barutello, V., Secchi, S.: Morse index properties of colliding solutions to the $N$-body problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 539–565, 2008

  2. Burgos, J. M.: Existence of partially hyperbolic motions in the $N$-body problem. Proc. Amer. Math. Soc.

  3. Chazy, J.: Sur certaines trajectoires du problème des n corps. Bull. Astronom. 35, 321–389, 1918

  4. Chazy, J., Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment, Ann. Sci. E.N.S. (3-ème série) 39, 29–130 (1922)

  5. Chenciner, A.: Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry. Proceedings of the International Congress of Mathematicians Beijing 2002, vol. III, 279–294, Higher Ed. Press, Beijing, 2002.

  6. Contreras, G., Paternain, G.P.: Connecting orbits between static classes for generic Lagrangian systems. Topology 41, 645–666, 2002

    Article  MathSciNet  Google Scholar 

  7. Da Luz, A., Maderna, E.: On the free time minimizers of the Newtonian $N$-body problem. Math. Proc. Camb. Phil. Soc. 156, 209–227, 2014

    Article  MathSciNet  Google Scholar 

  8. Duignan, N., Moeckel, R., Montgomery, R., Yu, G.: Chazy-type asymptotics and hyperbolic scattering for the $n$-body problem. Arch. Ration. Mech. Anal. 238(1), 255–297, 2020

    Article  MathSciNet  Google Scholar 

  9. Fathi, A.: Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation. Proceedings of the International Congress of Mathematicians Seoul III, 597–621, 2014

    MathSciNet  MATH  Google Scholar 

  10. Ferrario, D., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical $n$-body problem. Invent. Math. 155(2), 305–362, 2004

    Article  ADS  MathSciNet  Google Scholar 

  11. Maderna, E.: On weak KAM theory for $N$-body problems. Ergod. Theory Dyn. Syst. 32(3), 1019–1041, 2012

    Article  MathSciNet  Google Scholar 

  12. Maderna, E.: Minimizing configurations and Hamilton–Jacobi equations of homogeneous $N$-body problems. Regul. Chaotic Dyn. 18(6), 656–673, 2013

    Article  ADS  MathSciNet  Google Scholar 

  13. Maderna, E., Venturelli, A.: Viscosity solutions and hyperbolic motions: A new PDE method for the $N$-body problem. Ann. of Math. (2) 192(2), 499–550, 2020

  14. Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Bras. Mat. 28(2), 141–153, 1997

    Article  MathSciNet  Google Scholar 

  15. Marchal, C.: How the method of minimization of action avoids singularities. Celestial Mech. Dynam. Astronom. 83, 325–353, 2002

    Article  ADS  MathSciNet  Google Scholar 

  16. Marchal, C., Saari, D.: On the final evolution of the $n$-body problem. J. Differ. Equ. 20(1), 150–186, 1976

    Article  ADS  MathSciNet  Google Scholar 

  17. McGehee, R.: Von Zeipel’s theorem on singularities in celestial mecanics. Expo. Math. 4, 335–345, 1986

  18. Moeckel, R., Montgomery, R., Sánchez Morgado, H.: Free time minimizers for the three-body problem. Clest. Mech. Dyn. Astr. 130(3), 2018

  19. Percino-Figueroa, B., Sánchez-Morgado, H.: Busemann functions for the $N$-body problem. Arch. Ration. Mech. Anal. 213(3), 981–991, 2014

    Article  MathSciNet  Google Scholar 

  20. von Zeipel, H.: Sur les singularités du problème des n corps, Ark. Math. Astr. Fys., n.4, 1–4 (1908)

  21. Xue, J.: Non-collision singularities in a planar $4$-body problem. Acta Math. 224(2), 253–388, 2020

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Cátedras Conacyt program of Consejo Nacional de Ciencia y Tecnología del Gobierno de México. The second author thanks Grupo CSIC 618 UdelaR, Uruguay, as well as the mathematics department of Cinvestav (Instituto Politécnico Nacional, México) for the hospitality during part of the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Maderna.

Additional information

Communicated by P.-L. Lions.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos, J.M., Maderna, E. Geodesic Rays of the N-Body Problem. Arch Rational Mech Anal 243, 807–827 (2022). https://doi.org/10.1007/s00205-021-01743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01743-3

Navigation