Abstract
We study anomalous dissipation in hydrodynamic turbulence in the context of passive scalars. Our main result produces an incompressible \(C^\infty ([0,T)\times {\mathbb {T}}^d)\cap L^1([0,T]; C^{1-}({\mathbb {T}}^d))\) velocity field which explicitly exhibits anomalous dissipation. As a consequence, this example also shows the non-uniqueness of solutions to the transport equation with an incompressible \(L^1([0,T]; C^{1-}({\mathbb {T}}^d))\) drift, which is smooth except at one point in time. We also give a sufficient condition for anomalous dissipation based on solutions to the inviscid equation becoming singular in a controlled way. Finally, we discuss connections to the Obukhov-Corrsin monofractal theory of scalar turbulence along with other potential applications.
This is a preview of subscription content, access via your institution.

Notes
We remark that it is also unknown whether this double exponential lower bound above is attained for any flow. In discrete time [38] produce an example where is in fact attained. In continuous time, however, there are no examples exhibiting the double exponential decay. Moreover, Miles and Doering [49] provide numerical evidence and a heuristic argument that the Batchelor scale limits the effectiveness of mixing, suggesting that the \(L^2\) energy can only decay exponentially.
References
Alberti, G., Bianchini, S., Crippa, G.: Structure of level sets and Sard-type properties of Lipschitz maps. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 12(4), 863–902, 2013
Alberti, G., Bianchini, S., Crippa, G.: A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS) 16(2), 201–234, 2014. https://doi.org/10.4171/JEMS/431.
Alberti, G., Crippa, G., Mazzucato, A.L.: Exponential self-similar mixing by incompressible flows. J. Am. Math. Soc. 32(2), 445–490, 2019. https://doi.org/10.1090/jams/913.
Alberti, G., Crippa, G., Mazzucato, A.L.: Loss of regularity for the continuity equation with non-Lipschitz velocity field. Ann. PDE 5(1), 19, 2019. https://doi.org/10.1007/s40818-019-0066-3.
Aizenman, M.: On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. Math. (2) 107(2), 287–296, 1978. https://doi.org/10.2307/1971145.
Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics, vol. 125. Applied Mathematical Sciences. Springer-Verlag, New York (1998)
Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Math. 158(2), 227–260, 2004. https://doi.org/10.1007/s00222-004-0367-2.
Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure exponential mixing of passive scalars by the stochastic Navier-Stokes equations (2019). arXiv:1905.03869
Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: The Batchelor spectrum of passive scalar turbulence in stochastic fluid mechanics (2019). arXiv:1911.11014
Buckmaster, T., De Lellis, C., Székelyhidi, L., Jr., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 229–274, 2019. https://doi.org/10.1002/cpa.21781.
Bernard, D., Gawȩdzki, K., Kupiainen, A.: Slow modes in passive advection. J. Stat. Phys. 90(3–4), 519–569, 1998. https://doi.org/10.1023/A:1023212600779.
Bressan, A.: A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova 110, 97–102, 2003
Bressan, A.: Prize offered for the solution of a problem on mixing flows. (2006)
Brué, Elia, Nguyen, Quoc-Hung: Advection diffusion equation with Sobolev vector field (2020). arXiv:2003.08198
Crippa, G., De Lellis, C.: Regularity and compactness for the DiPerna-Lions flow. In: Hyperbolic problems: theory, numerics, applications, pp. 423–430. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-75712-2_39
Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math 616, 15–46, 2008
Constantin, P., W, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1):207–209 (1994). http://projecteuclid.org/euclid.cmp/1104271041
Crippa, G., Gusev, N., Spirito, S., Wiedemann, E.: Non-uniqueness and prescribed energy for the continuity equation. Commun. Math. Sci. 13(7), 1937–1947, 2015. https://doi.org/10.4310/CMS.2015.v13.n7.a12.
Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. (2) 168(2), 643–674, 2008. https://doi.org/10.4007/annals.2008.168.643.
Colombini, F., Luo, T., Rauch, J.: Uniqueness and nonuniqueness for nonsmooth divergence free transport. In Seminaire: Équations aux Dérivées Partielles, 2002–2003, Sémin. Équ. Dériv. Partielles, pages Exp. No. XXII, 21. École Polytech., Palaiseau (2003)
Corrsin, S.: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469–473, 1951
Constantin, P., Procaccia, I.: Scaling in fluid turbulence: a geometric theory. Phys. Rev. E (3) 47(5), 3307–3315, 1993. https://doi.org/10.1103/PhysRevE.47.3307.
Constantin, P., Procaccia, I.: The geometry of turbulent advection: sharp estimates for the dimensions of level sets. Nonlinearity 7(3), 1045–1054, 1994
Zelati, M. Coti, Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation time-scales and mixing rates (2018). arXiv:1806.03258
Drivas, T.D., Eyink, G.L.: A Lagrangian fluctuation-dissipation relation for scalar turbulence. Part I. Flows with no bounding walls. J. Fluid Mech. 829, 153–189, 2017. https://doi.org/10.1017/jfm.2017.567.
Drivas, T.D., Eyink, G.L.: An Onsager singularity theorem for Leray solutions of incompressible Navier-Stokes. Nonlinearity 32(11), 4465–4482, 2019. https://doi.org/10.1088/1361-6544/ab2f42.
Depauw, N.: Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan. C. R. Math. Acad. Sci. Paris 337(4), 249–252, 2003. https://doi.org/10.1016/S1631-073X(03)00330-3.
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547, 1989. https://doi.org/10.1007/BF01393835.
De Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436, 2009. https://doi.org/10.4007/annals.2009.170.1417.
De Lellis, C., Székelyhidi, L., Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260, 2010. https://doi.org/10.1007/s00205-008-0201-x.
De Lellis, C., Székelyhidi, L., Jr.: The \(h\)-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.) 49(3), 347–375, 2012. https://doi.org/10.1090/S0273-0979-2012-01376-9.
Donzis, D.A., Sreenivasan, K.R., Yeung, P.K.: Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199–216, 2005. https://doi.org/10.1017/S0022112005004039.
Eyink, G.L., Drivas, T.D.: Spontaneous stochasticity and anomalous dissipation for Burgers equation. J. Stat. Phys. 158(2), 386–432, 2015. https://doi.org/10.1007/s10955-014-1135-3.
Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240, 1994. https://doi.org/10.1016/0167-2789(94)90117-1.
Eyink, G.L.: Intermittency and anomalous scaling of passive scalars in any space dimension. Phys. Rev. E 54, 1497–1503, 1996. https://doi.org/10.1103/PhysRevE.54.1497.
Elgindi, T.M., Zlatoš, A.: Universal mixers in all dimensions (2018). arXiv:1809.09614
Falkovich, G., Gawȩdzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73(4), 913–975, 2001. https://doi.org/10.1103/revmodphys.73.913.
Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810–1851, 2019. https://doi.org/10.1088/1361-6544/ab0e56.
Gawȩdzki, K.: Soluble models of turbulent transport. In: Non-equilibrium statistical mechanics and turbulence. London Mathematical Society Lecture Note Series, vol. 355, pp. 44–107. Cambridge University Press, Cambridge (2008)
Iyer, G., Kiselev, A., Xu, X.: Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows. Nonlinearity 27(5), 973–985, 2014. https://doi.org/10.1088/0951-7715/27/5/973.
Isett, P.: A proof of Onsager’s conjecture. Ann. Math. (2) 188(3), 871–963, 2018. https://doi.org/10.4007/annals.2018.188.3.4.
Iyer, G., Xu, X., Zlatoš, A.: Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs (2019). arXiv:1908.01941
Jeong, I.-J., Yoneda, T.: Enstrophy dissipation and vortex thinning for the incompressible 2D Navier-Stokes equations. Nonlinearity 34(4), 1837–1853, 2021
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15(2), L21–L24, 2003. https://doi.org/10.1063/1.1539855.
Kolmogorov, A.N.: Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 32, 19–21, 1941
Le Jan, Y., Raimond, O.: Integration of Brownian vector fields. Ann. Probab. 30(2), 826–873, 2002. https://doi.org/10.1214/aop/1023481009.
Le Jan, Y., Raimond, O.: Flows, coalescence and noise. Ann. Probab. 32(2), 1247–1315, 2004. https://doi.org/10.1214/009117904000000207.
Lunasin, E., Lin, Z., Novikov, A., Mazzucato, A., Doering, C.R.: Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53(11) (2012). https://doi.org/10.1063/1.4752098
Miles, C.J., Doering, C.R.: Diffusion-limited mixing by incompressible flows. Nonlinearity 31(5), 2346, 2018. https://doi.org/10.1088/1361-6544/aab1c8.
Modena, S., Székelyhidi L., Jr.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4(2):18–38 (2018). https://doi.org/10.1007/s40818-018-0056-x
Obukhov, A.M.: Structure of temperature field in turbulent flow. Izv. Akad. Nauk. SSSR, Geogr. Geofiz, 13: 1949
Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6, 279–287, 1949
Pierrehumbert, R.: Tracer microstructure in the large-eddy dominated regime. Chaos Solitons Fractals 4(6), 1091–1110, 1994. https://doi.org/10.1016/0960-0779(94)90139-2. Special Issue: Chaos Applied to Fluid Mixing
Pearson, B.R., Krogstad, P.A., van de Water, W.: Measurements of the turbulent energy dissipation rate. Phys. Fluids 14(3), 1288–1290, 2002. https://doi.org/10.1063/1.1445422.
Poon, C.-C.: Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21(3–4), 521–539, 1996. https://doi.org/10.1080/03605309608821195.
Sreenivasan, K.R.: On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27(5), 1048–1051, 1984. https://doi.org/10.1063/1.864731.
Seis, C.: Maximal mixing by incompressible fluid flows. Nonlinearity 26(12), 3279, 2013
Seis, C.: Diffusion limited mixing rates in passive scalar advection (2020). arXiv:2003.08794
Sreenivasan, K.R.: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10(2), 528–529, 1998. https://doi.org/10.1063/1.869575.
Sreenivasan, K.R.: Turbulent mixing: a perspective. Proc. Natl. Acad. Sci. 116(37), 18175–18183, 2019. https://doi.org/10.1073/pnas.1800463115.
Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(6787), 639, 2000. https://doi.org/10.1038/35015000.
Thiffeault, J.-L.: Using multiscale norms to quantify mixing and transport. Nonlinearity 25(2), R1–R44, 2012. https://doi.org/10.1088/0951-7715/25/2/R1.
Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate (2018). arXiv:1811.11904
Yao, Y., Zlatoš, A.: Mixing and un-mixing by incompressible flows. J. Eur. Math. Soc. (JEMS) 19(7), 1911–1948, 2017. https://doi.org/10.4171/JEMS/709.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Constantin.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partially supported by the National Science Foundation under grants DMS-1703997 to TD, DMS-1817134 to TE, DMS-1814147 to GI, as well as by the Center for Nonlinear Analysis. IJ has been supported by the Samsung Science and Technology Foundation under Project Number SSTF-BA2002-04. TD and TE would like to thank the Korean Institute for Advanced Study (KIAS) for its hospitality. TD would like to thank Navid Constantinou for useful discussions.
Rights and permissions
About this article
Cite this article
Drivas, T.D., Elgindi, T.M., Iyer, G. et al. Anomalous Dissipation in Passive Scalar Transport. Arch Rational Mech Anal 243, 1151–1180 (2022). https://doi.org/10.1007/s00205-021-01736-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-021-01736-2