Skip to main content
Log in

The Two-Dimensional Liquid Crystal Droplet Problem with a Tangential Boundary Condition

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper studies a shape optimization problem which reduces to a nonlocal free boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence of an optimal shape that has two cusps on the boundary. We also prove that the boundary of the droplet is a chord–arc curve with its normal vector field in the VMO space, and its arc-length parameterization belongs to the Sobolev space \(H^{3/2}\). In fact, the boundary curves of such droplets closely resemble the so-called Weil–Petersson class of planar curves. In addition, the asymptotic behavior of the optimal shape when the volume becomes extremely large or small is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Quasiconformal reflections. Acta Math. 109, 291–301, 1963

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, vol. 254. Clarendon Press, Oxford, 2000

  3. Beurling, A., Ahlfors, L.V.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142, 1956

    Article  MathSciNet  Google Scholar 

  4. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices, vol. 13. Birkhäuser, Boston (1994)

  5. Bishop, C. J.: Weil–Petersson curves, conformal energies, \(\beta \)-numbers, and minimal surfaces. 2019

  6. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86, 2000

    Article  MathSciNet  Google Scholar 

  7. Braides, A.: \(\varGamma \)-Convergence for Beginners. Oxford University Press (2002)

  8. Cui, G.: Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. Sci. China Ser. A. 43, 267–279, 2000

    Article  MathSciNet  Google Scholar 

  9. DeBenedictis, A., Atherton, T.J.: Shape minimisation problems in liquid crystals. Liq. Cryst. 43, 2352–2362, 2016

    Article  Google Scholar 

  10. Ericksen, J.L.: Equilibrium theory of liquid crystals. Adv. Liq. Cryst. 2, 233–298, 1976

    Article  Google Scholar 

  11. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120, 1990

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, vol. 5. CRC Press, Cambridge (1991)

    MATH  Google Scholar 

  13. de Gennes, P., Prost, J.: The Physics of Liquid Crystals, vol. 83. Oxford University Press, Oxford (1995)

    Google Scholar 

  14. Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York, 1969, xiv+676 pp.

  15. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28, 1958

    Article  Google Scholar 

  16. Friedel, G.: Les états mésomorphes de la matière. Ann. Phys. 9, 273–474, 1922

    Article  Google Scholar 

  17. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980, 2008

    Article  MathSciNet  Google Scholar 

  18. Gardiner, F.P., Harvey, W.J.: Universal Teichmüller space. Handbook of Complex Analysis: Geometric Function Theory Vol. 1. Amsterdam: North-Holland, pp. 457–492, 2002

  19. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller theory. In: Mathematical Surveys and Monographs, vol. 76. American Mathematical Society, Providence RI, 2000

  20. Golovaty, D., Novack, M., Sternberg, P., Venkatraman, R.: A model problem for nematic–isotropic transitions with highly disparate elastic constants. Arch. Ration. Mech. Anal. 236, 1–67, 2020

    Article  MathSciNet  Google Scholar 

  21. Jerison, D.S., Kenig, C.E.: Hardy spaces, \(A^\infty \), and singular integrals on chord-arc domains. Math. Scand. 50, 221–247, 1982

    Article  MathSciNet  Google Scholar 

  22. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88, 1981

    Article  MathSciNet  Google Scholar 

  23. Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102, 1–15, 1990

    Article  ADS  MathSciNet  Google Scholar 

  24. Kaznacheev, A.V., Bogdanov, M.M., Sonin, A.S.: The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals. J. Exp. Theor. Phys. 97(6), 1059–1167, 2003

    Article  Google Scholar 

  25. Kenig, C.E., Toro, T.: Harmonic measure on locally flat domains. Duke Math. J. 87, 509–551, 1997

    Article  MathSciNet  Google Scholar 

  26. Kim, Y.K., Shiyanovskii, S.V., Lavrentovich, O.D.: Morphogenesis of defects and Tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J. Phys. Condens. Matter 25, 404202, 2013

    Article  Google Scholar 

  27. Krishnamurthy, K.S., Kumar, P., Palakurthy, N.B., Yelamaggad, C.V., Virga, E.G.: Interfacial and morphological features of a twist-bend nematic drop. Soft Matter 12, 4967–4978, 2016

    Article  ADS  Google Scholar 

  28. Li, Q.: Geometric Measure Theory with Applications to Shape Optimization Problems. Ph.D. Diss., Purdue University, 2018

  29. Lin, F., Poon, C.C.: On nematic liquid crystal droplets. In: Elliptic and Parabolic Methods in Geometry, pp. 91–121, 1996

  30. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows, p. 267. World Scientific, Singapore (2008)

    Book  Google Scholar 

  31. Lin, F., Wang, C.: Isotropic–nematic phase transition and liquid crystal droplets. To appear in Commun. Pure Appl. Math.arXiv:2009.11487 (2020).

  32. Lishchuk, S.V., Care, C.M.: Shape of an isotropic drolet in a nematic liquid crystal: the role of surfactant. Phys. Rev. E 70, 011702, 2004

    Article  ADS  Google Scholar 

  33. Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Math. Diss. Ser. A 14, 384–401, 1978

    MATH  Google Scholar 

  34. Morvant, A., Seal, E., Walker, S.W.: A coupled Ericksen/Allen–Cahn model for liquid crystal droplets. Comput. Math. Appl. 75, 4048–4065, 2018

    Article  MathSciNet  Google Scholar 

  35. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899, 1933

    Article  Google Scholar 

  36. Prinsen, P., van der Schoot, P.: Parity breaking in nematic tactoids. J. Phys. Condens. Matter 16, 8835–8850, 2004

    Article  ADS  Google Scholar 

  37. Prinsen, P., van der Schoot, P.: Shape and director-field transformation of tactoids. Phys. Rev. E 68, 021701, 2003

    Article  ADS  Google Scholar 

  38. Paparini, S., Virga, E.G.: Shape bistability in 2D chromonic droplets. J. Phys. Condens. Matter 33, 495101, 2021

    Article  Google Scholar 

  39. Rudnick, J., Bruinsma, R.: Shape of domains in two-dimensional systems: virtual singualrities and a generalitzed wulff construction. Phys. Rev. Lett. 74, 2491–2494, 1995

    Article  ADS  Google Scholar 

  40. Shen, Q., Liu, C., Calderer, M.C.: Axisymmetric configurations of bipolar liquid crystal droplets. Continuum Mech. Thermodyn. 14, 363–375, 2002

    Article  ADS  MathSciNet  Google Scholar 

  41. Takhtajan, L.A., Teo, Lee-Peng.: Weil–Petersson metric on the universal Teichmüller space. Mem. Amer. Math. Soc. 183(861), viii+119, 2006

    MATH  Google Scholar 

  42. van Bijnen, R.M.W., Otten, R.H.J., van der Schoot, P.: Texture and shape of two-dimensional domains of nematic liquid crystals. Phys. Rev. E 86(5), 051703, 2012

    Article  ADS  Google Scholar 

  43. Virga, E.G.: Drops of nematic liquid crystals. Arch. Ration. Mech. Anal. 107, 371–390, 1989

    Article  MathSciNet  Google Scholar 

  44. Williams, R.D.: Two transitions in tangentially anchored nemaitc droplets. J. Phys. A Math. General. 19, 3211, 1986

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Geng.

Additional information

Communicated by E. Virga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are partially supported by the NSF Grant DMS1955249. The first author is partially supported by the Basque Government through the BERC 2018-2021 program and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project PID2020-114189RB-I00 funded by Agencia Estatal de Investigación (PID2020-114189RB-I00/AEI/10.13039/501100011033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Lin, F. The Two-Dimensional Liquid Crystal Droplet Problem with a Tangential Boundary Condition. Arch Rational Mech Anal 243, 1181–1221 (2022). https://doi.org/10.1007/s00205-021-01733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01733-5

Navigation