Skip to main content

Linear Stability of Solitary Waves for the Isothermal Euler–Poisson System

Abstract

We study the asymptotic linear stability of a two-parameter family of solitary waves for the isothermal Euler–Poisson system. When the linearized equations about the solitary waves are considered, the associated eigenvalue problem in \(L^2\) space has a zero eigenvalue embedded in the neutral spectrum, i.e., there is no spectral gap. To resolve this issue, use is made of an exponentially weighted \(L^2\) norm so that the essential spectrum is strictly shifted into the left-half plane, and this is closely related to the fact that solitary waves exist in the super-ion-sonic regime. Furthermore, in a certain long-wavelength scaling, we show that the Evans function for the Euler–Poisson system converges to that for the Korteweg–de Vries (KdV) equation as an amplitude parameter tends to zero, from which we deduce that the origin is the only eigenvalue on its natural domain with algebraic multiplicity two. We also show that the solitary waves are spectrally stable in \(L^2\) space. Moreover, we discuss (in)stability of large amplitude solitary waves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. The mass of ions is much heavier than that of electrons for plasma environments. Additionally, it is assumed that (i) (isothermal) \(T_i\) and \(T_e\) are constant, (ii) (electrostatic) the time variation of the magnetic field is negligible, (iii) (plane wave) the dynamics of ions and electrons occur only in one direction.

  2. By letting \(c=-c'\) and \(u=-u'\), we obtain the traveling waves moving to the left direction.

  3. A compact proof of the theorem can be found in Section 5.2 of [1] . We also refer to Section 5.7 of [1] for a note on the theorem.

  4. This condition is also the necessary condition for the existence of non-trivial smooth solutions. When \(\varepsilon =\varepsilon _K\), the traveling wave solution is not differentiable at the peak. When \(\varepsilon =0\), there is only a trivial solution. See [8].

  5. This is why \((c+(-1)^j\sqrt{K})\) is considered in (5.32). Its purpose is to obtain the decomposition (5.41), where the matrix \(S_1\) is symmetric.

  6. We have used the “integral” command in MATLAB, which uses the adaptive quadrature rule based on Gauss-Kronrod quadrature formula. In general, the adaptive quadrature method is known to be effective and efficient for badly behaving integrands.

  7. Note that \(\mathcal {A}(\lambda )^*=-d/dx - \overline{A(x,\lambda ,\varepsilon )}^T = -d/dx - A^T(x,\overline{\lambda },\varepsilon )\) from the form of the matrix A.

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167212, 1990

    MathSciNet  Google Scholar 

  3. Bae, J., Kwon, B.: Small amplitude limit of solitary waves for the Euler–Poisson system. J. Differ. Equ. 266, 3450–3478, 2019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. Lond. A 328, 153–183, 1972

    Article  ADS  MathSciNet  Google Scholar 

  5. Bona, J.L.: On the stability of solitary waves. Proc. Roy. Soc. Lond. Ser. A 344, 363–374, 1975

    Article  ADS  MATH  Google Scholar 

  6. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Springer, Berlin (1984)

    Book  Google Scholar 

  7. Coppel, W.A.: Dichotomies in Stability Theory, vol. 629. Lecture Notes in Mathematics. Springer, Berlin (1978)

    MATH  Google Scholar 

  8. Cordier, S., Degond, P., Markowich, P., Schmeiser, C.: Travelling wave analysis of an isothermal Euler–Poisson model. Ann. Fac. Sci. Toulouse Math. 5, 599–643, 1996

    Article  MathSciNet  MATH  Google Scholar 

  9. Davidson, R.C.: Methods in Nonlinear Plasma Theory, 1st edn. Academic Press, Cambridge (1972)

    Google Scholar 

  10. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  11. Engelberg, S., Liu, H., Tadmor, E.: Critical threshold in Euler–Poisson equations. Indiana Univ. Math. J. 50, 109–157, 2001

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, J.W.: Nerve axon equations. I. Linear approximation. Indiana Univ. Math. J. 21, 877–955, 1972

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, J.W.: Nerve axon equations. II. Stability at rest. Indiana Univ. Math. J. 22, 75–90, 1972

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, J.W.: Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–594, 1972

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, J.W.: Nerve axon equations. IV. The stable and unstable impulse. Indiana Univ. Math. J. 24, 1169–1190, 1975

    Article  MathSciNet  MATH  Google Scholar 

  16. Grenier, E., Guo, Y., Pausader, B., Suzuki, M.: Derivation of the ion equation. Q. Appl. Math. 78, 305–332, 2019

    Article  MathSciNet  MATH  Google Scholar 

  17. Gardner, C.S., Morikawa, G.K.: Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves. New York Univ. Courant Inst. Math. Sci. Res. Rep., NYO-9082, (1960)

  18. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097, 1967

    Article  ADS  MATH  Google Scholar 

  19. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg–de Vries equation and generalizations, VI: methods for exact solution. Commun. Pure Appl. Math. 27, 97–133, 1974

    Article  MATH  Google Scholar 

  20. Guo, Y., Pausader, B.: Global smooth ion dynamics in the Euler–Poisson system. Commun. Math. Phys. 303, 89, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Pu, X.: KdV limit of the Euler–Poisson system. Arch. Ration. Mech. Anal. 211, 673–710, 2014

    Article  MathSciNet  MATH  Google Scholar 

  22. Haragus, M., Nicholls, D.P., Sattinger, D.H.: Solitary wave interactions of the EulerPoisson equations. J. Math. Fluid Mech. 5, 92–118, 2003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Haragus, M., Scheel, A.: Linear stability and instability of ion-acoustic plasma solitary waves. Physica D 170, 13–30, 2002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Haragus, M., Scheel, A.: Finite-wavelength stability of capillary-gravity solitary waves. Commun. Math. Phys. 225, 487–521, 2002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  26. Ikezi, H., Taylor, R.J., Baker, D.R.: Formation and interaction of ion-acoustic solitons. Phys. Rev. Lett. 25(1), 11–14, 1970

    Article  ADS  Google Scholar 

  27. Jones, C.K.R.T.: Stability of the travelling wave solutions of the Fitzhugh–Nagumo system. Trans. AMS 286(2), 431–469, 1984

    Article  MathSciNet  MATH  Google Scholar 

  28. Jung, C.-Y., Kwon, B., Suzuki, M.: Quasi-neutral limit for the Euler–Poisson system in the vicinity of plasma sheaths, (2019) preprint

  29. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  30. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490, 1968

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Sattinger, D.H.: Soliton collisions in the ion acoustic plasma equations. J. Math. Fluid Mech. 1, 117–130, 1999

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, Y.A.: Linear stability of solitary waves of the Green–Naghdi equations. Commun. Pure Appl. Math. 54, 501–536, 2001

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, H.: Wave breaking in a class of nonlocal dispersive wave equations. J. Nonlinear Math. Phys. 13(3), 441–466, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Martel, Y., Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157(3), 219–254, 2001

    Article  MathSciNet  MATH  Google Scholar 

  35. Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18(1), 55–80, 2005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Martel, Y., Merle, F., Tsai, T.P.: Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, 347, 2002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Miller, J.R., Weinstein, M.I.: Asymptotic stability of solitary waves for the regularized long wave equation. Commun. Pure Appl. Math. 49, 399–441, 1996

    Article  MathSciNet  MATH  Google Scholar 

  38. Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256, 1984

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Palmer, K.J.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156, 1988

    Article  MathSciNet  MATH  Google Scholar 

  40. Pego, R.L., Sun, S.M.: Asymptotic linear stability of solitary water waves. Arch. Ration. Mech. Anal. 222, 1161–1216, 2016

    Article  MathSciNet  MATH  Google Scholar 

  41. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A 340, 47–94, 1992

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Pego, R.L., Weinstein, M.I.: Convective linear stability of solitary waves for Boussinesq equations. Stud. Appl. Math. 99, 311–375, 1997

    Article  MathSciNet  MATH  Google Scholar 

  44. Prüss, J.: On the spectrum of \(C_0\)-semigroups. Trans. Am. Math. Soc. 284(2), 847–857, 1984

    MATH  Google Scholar 

  45. Sagdeev, R.Z.: Cooperative phenomena and shock waves in collisionless plasmas. In: Leontoich, M.A. (ed.) Reviews of Plasma Physics, vol. IV, pp. 23–91. Consultants Bureau, New York (1966)

    Google Scholar 

  46. Sandstede, B.: In: Fielder, B. (ed.) Stability of travelling waves. In: Handbook of Dynamical Systems, vol. 2. North-Holland, Amsterdam, pp. 983–1055 (2002)

  47. Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355, 1976

    Article  MathSciNet  MATH  Google Scholar 

  48. Nishibata, S., Ohnawa, M., Suzuki, M.: Asymptotic stability of boundary layers to the Euler–Poisson equations arising in plasma physics. SIAM J. Math. Anal. 44, 761–790, 2012

    Article  MathSciNet  MATH  Google Scholar 

  49. Washimi, H., Taniuti, T.: Propagation of ion-acoustic waves of small amplitude. Phys. Rev. Lett. 17(9), 996–998, 1966

    Article  ADS  Google Scholar 

  50. Kapitula, T., Promislow, K.: Spectral and Dynamical Stability of Nonlinear waves. Springer, New York (2013)

    Book  MATH  Google Scholar 

  51. Kapitula, T., Sandstede, B.: Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations. Physica D 124(1–3), 58–103, 1998

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and recurrence of initial states. Phys. Rev. Lett. 15, 240–243, 1965

  53. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 741–871, 1998

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

B.K. was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of science, ICT and future planning (NRF-2020R1A2C1A01009184)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsik Bae.

Additional information

Communicated by G. Friesecke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Eigenvalue problems of the Euler–Poisson system and the KdV equation

We present a formal reduction of the eigenvalue problem of the Euler–Poisson system (1.10) to the eigenvalue problem of the KdV equation. By intoducing the scaling

$$\begin{aligned}&\xi := \varepsilon ^{1/2}x, \quad \lambda := \varepsilon ^{3/2}\Lambda , \quad (n_*,u_*,\phi _*)(\xi ):=\varepsilon ^{-1}(n_c,u_c,\phi _c)(x), \\&\quad (\dot{n}_*, \dot{u}_*, \dot{\phi }_*)(\xi ):=(\dot{n},\dot{u},\dot{\phi })(x), \end{aligned}$$

(1.10) becomes (letting \((\dot{n}_*,\dot{u}_*,\dot{\phi }_*)=(n,u,\phi )\) for notational simplicity)

figure j

By integrating (9.1)a–(9.1)b in \(\xi \), we formally obtain that (recall that \(c=\sqrt{1+K}+\varepsilon \))

figure k

Taking derivative of (9.1)c in \(\xi \), and then subtracting the resulting equation from (9.1)b, \(-\partial _\xi \phi \) term in the RHS of (9.1)b is canceled. Then, by applying the Taylor expansion, we obtain

$$\begin{aligned}&\varepsilon \Lambda u -(\sqrt{1+K}+\varepsilon ) \partial _\xi u + (K + 1 )\partial _\xi n - K \partial _\xi (\varepsilon n_*n) + \partial _\xi (\varepsilon u_*u)\nonumber \\&\quad + \varepsilon \partial _\xi ^3\phi - \partial _\xi (\varepsilon \phi _*\phi ) =O(\varepsilon ^2). \end{aligned}$$
(9.3)

Multiplying (9.1)a by \(\mathsf {V}=\sqrt{1+K}\) and then adding the resulting equation to (9.3), we see that the terms \(-\sqrt{1+K}\,\partial _\xi u\) and \((1+K)\partial _\xi n\) in (9.3) are canceled, and we have

$$\begin{aligned} \begin{aligned}&\mathsf {V}\Lambda n -\mathsf {V}\partial _\xi n + \mathsf {V}\partial _\xi (n_*u+u_*n) \\&+ \Lambda u - \partial _\xi u - K \partial _\xi (n_*n) + \partial _\xi (u_*u) + \partial _\xi ^3\phi - \partial _\xi (\phi _*\phi ) =O(\varepsilon ). \end{aligned} \end{aligned}$$
(9.4)

Using the relation (9.2) and Theorem 2.1, we obtain from (9.4) that

$$\begin{aligned} \Lambda n - \partial _\xi n + \mathsf {V}\partial _\xi (\Psi _\text {K} n) + \frac{1}{2\mathsf {V}}\partial _\xi ^3 n = O(\varepsilon ). \end{aligned}$$
(9.5)

1.2 Specific form of \(A_*(\xi ,\Lambda ,\varepsilon )\)

We denote \(\partial _\xi \) by \('\) for simplicity. We let \({A_1}_*(\xi ,\varepsilon ):=A_1(x,\varepsilon )\), \({A_2}_*(\xi ,\varepsilon ):=A_2(x,\varepsilon )\), and \((n_*,u_*,\phi _*)(\xi ):=\varepsilon ^{-1}(n_c,u_c,\phi _c)(x)\) for \(\xi =\varepsilon ^{1/2}x\). Then from (3.14) and (2.12), we have

$$\begin{aligned}&{A_1}_*= \small \begin{pmatrix} \frac{(c-\varepsilon u_*)\varepsilon ^{3/2} u_*'}{J} - \frac{K\varepsilon ^{3/2}n_*'}{J(1+\varepsilon n_*)} &{} \frac{(c-\varepsilon u_*)\varepsilon ^{3/2}n_*'}{J} + \frac{(1+\varepsilon n_*)\varepsilon ^{3/2} u_*'}{J} &{} 0 &{} \frac{1+\varepsilon n_*}{J} \\ \frac{K\varepsilon ^{3/2} u_*'}{J(1+\varepsilon n_*)} -\frac{K(c-\varepsilon u_*)\varepsilon ^{3/2}n_*'}{J(1+\varepsilon n_*)^2} &{} \frac{K\varepsilon ^{3/2} n_*'}{J(1+\varepsilon n_*)} + \frac{(c-\varepsilon u_*)\varepsilon ^{3/2} u_*'}{J} &{} 0 &{} \frac{(c-\varepsilon u_*)}{J} \\ 0 &{} 0 &{} 0 &{} 1 \\ -1 &{} 0 &{} e^{\varepsilon \phi _*} &{} 0 \end{pmatrix}, \\&\frac{1}{\sqrt{\varepsilon }}S^{-1}{A_1}_*S = \small \begin{pmatrix} \dfrac{a_{22}-\mathsf {V}a_{12}}{\varepsilon ^{1/2}} &{} \frac{a_{21} + \mathsf {V}a_{22} -\mathsf {V}a_{11} - \mathsf {V}^2a_{12} }{\varepsilon ^{3/2}} &{} \dfrac{a_{24}-\mathsf {V}a_{14} }{\varepsilon } &{} 0 \\ \varepsilon ^{1/2} \, a_{12} &{} \dfrac{a_{11} + \mathsf {V}a_{12}}{\varepsilon ^{1/2}} &{} a_{14} &{} 0 \\ 0 &{} \dfrac{e^{\varepsilon \phi _*}-1}{\varepsilon } &{} 0 &{} e^{\varepsilon \phi _*} \\ \dfrac{-a_{12}}{\varepsilon ^{1/2}} &{} -\dfrac{a_{11} + \mathsf {V}a_{12}}{\varepsilon ^{3/2}} &{} \dfrac{1-a_{14}}{\varepsilon } &{} 0 \end{pmatrix}, \\&\frac{\varepsilon ^{3/2}\Lambda }{\sqrt{\varepsilon }}S^{-1}{A_2}_*S= \frac{\Lambda }{J} \small \begin{pmatrix} \varepsilon ((c-\varepsilon u_*) - \mathsf {V}(1+\varepsilon n_*)) &{} \frac{K}{1+\varepsilon n_*} - \mathsf {V}^2(1+\varepsilon n_*) &{} 0 &{} 0 \\ \varepsilon ^2 (1+\varepsilon n_*) &{} \varepsilon (c-\varepsilon u_*)+\varepsilon \mathsf {V}(1+\varepsilon n_*) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ -\varepsilon (1+\varepsilon n_*) &{} -(c-\varepsilon u_*)-\mathsf {V}(1+\varepsilon n_*) &{} 0 &{} 0 \end{pmatrix}, \end{aligned}$$

where \(a_{jk}\) is the (jk)-entry of the matrix \({A_1}_*\). Here, we note that

$$\begin{aligned} \frac{1-a_{14}}{\varepsilon } = \frac{(c-\varepsilon u_*)^2- K - (1+ \varepsilon n_*)}{\varepsilon J} = \frac{2\sqrt{1+K} + \varepsilon - 2c u_*+ \varepsilon u_*- n_*}{J}. \end{aligned}$$

Hence, we may define \(A_*(\xi ,\Lambda ,\varepsilon )\) for all \(\varepsilon \in [0,\varepsilon _*]\), and using (2.12), it is straightforward to check that we have (3.58) at \(\varepsilon =0\).

1.3 Proof of Lemma 3.9

Let \(\mathcal {A}(\lambda ):=d/dx - A(x,\lambda ,\varepsilon )\). For a closed subspace \(\text {Ran}(\lambda -\mathcal {L})\) of a Hilbert space \(\mathcal {H}\), we have

$$\begin{aligned} \mathcal {H}=\text {Ran}(\lambda -\mathcal {L}) \oplus \text {Ran}(\lambda -\mathcal {L})^\perp = \text {Ran}(\lambda -\mathcal {L}) \oplus \text {Ker}\left( \lambda - \mathcal {L} \right) ^*\quad ( \,^*:= \text {Hermitian adjoint}) \end{aligned}$$

and a similar decomposition holds for a closed subspace \(\text {Ran}\mathcal {A}(\lambda )\). We claim that

  1. C1.

    \(\text {Ran}(\lambda -\mathcal {L})\) is closed if and only if \(\text {Ran}(\mathcal {A}(\lambda ))\) is closed;

  2. C2.

    \(\text {Ker}(\lambda -\mathcal {L})\) is isomorphic to \(\text {Ker}(\mathcal {A}(\lambda ))\) ;

  3. C3.

    \(\text {Ker}\left( \lambda - \mathcal {L} \right) ^*\) is isomorphic to \(\text {Ker}(\mathcal {A}(\lambda )^*)\).

Then, Lemma 3.9 follows by the definition of the Fredholm index of an operator.

C2 and C3 are already checked in Section 3.2.Footnote 7 We only prove the right direction of C1 since the converse is easier to check. Also, we only consider the case of the unweighted \(L^2\)-space for simplicity.

We suppose that \(\text {Ran}(\lambda -\mathcal {L})\) is closed. For a sequence \(\mathbf {f}_j=(f_j^1,f_j^2,f_j^3,f_j^4)^T \in \text {Ran}(\mathcal {A}(\lambda ))\) such that \(\mathbf {f}_j \rightarrow \mathbf {f}=(f^1,f^2,f^3,f^4)^T\) in \((L^2)^4\) as \(j \rightarrow \infty \), let \(\mathbf {y}_j:=(n_j,u_j,\phi _j,\psi _j)^T\in (H^1)^4\) be a solution of \(\mathcal {A}(\lambda )\mathbf {y}_j=\mathbf {f}_j\) for each \(j\in \mathbb {Z}\).

We may decompose the last two components of \(\mathcal {A}(\lambda )\mathbf {y}_j=\mathbf {f}_j\) (corresponding to the Poisson equation (3.12)) into two parts:

$$\begin{aligned} \left\{ \begin{array}{l l} \partial _x\phi _j^f - \psi _j^f = f_j^3, \\ \partial _x\psi _j^f - e^{\phi _c}\phi _j^f = f_j^4, \end{array} \right. \quad \left\{ \begin{array}{l l} \partial _x(\phi _j-\phi _j^f) - (\psi _j - \psi _j^f) = 0, \\ \partial _x(\psi _j - \psi _j^f) - e^{\phi _c}(\phi _j-\phi _j^f) + n_j = 0. \end{array} \right. \end{aligned}$$
(9.6)

Using the energy estimate, one can check that the solution \((\phi _j^f,\psi _j^f) \in (H^1)^2\) to the LHS of (9.6) exists for all \((f_j^3,f_j^4) \in (L^2)^2\), and \((\phi _j^f,\psi _j^f)\) converges to \((\phi ^f,\psi ^f)\) in \((H^1)^2\), where \((\phi ^f,\psi ^f)\) \(\in \) \((H^1)^2\) satisfies

$$\begin{aligned} \partial _x\phi ^f - \psi = f^3, \quad \partial _x\psi ^f - e^{\phi _c}\phi = f^4. \end{aligned}$$
(9.7)

We rewrite the first system of (9.6) and the system (9.7) as

$$\begin{aligned} \mathcal {A}(\lambda )\begin{pmatrix} 0 \\ 0 \\ \phi _j^f \\ \psi _j^f \end{pmatrix} = \begin{pmatrix} L^{-1}\begin{pmatrix} 0 \\ \psi _j^f \end{pmatrix} \\ f_j^3 \\ f_j^4 \end{pmatrix} \quad \text {and} \quad \mathcal {A}(\lambda )\begin{pmatrix} 0 \\ 0 \\ \phi ^f \\ \psi ^f \end{pmatrix} = \begin{pmatrix} L^{-1}\begin{pmatrix} 0 \\ \psi ^f \end{pmatrix} \\ f^3 \\ f^4 \end{pmatrix}, \end{aligned}$$
(9.8)

respectively. Subtracting the LHS of (9.8) from \(\mathcal {A}(\lambda )\mathbf {y}_j=\mathbf {f}_j\), we have

$$\begin{aligned} \mathcal {A}(\lambda )\begin{pmatrix} n_j \\ u_j \\ \phi _j-\phi _j^f \\ \psi _j-\psi _j^f \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} f_j^1 \\ f_j^2 \end{pmatrix} -L^{-1}\begin{pmatrix} 0 \\ \psi _j^f \end{pmatrix} \\ 0 \\ 0 \end{pmatrix}, \end{aligned}$$

which implies that

$$\begin{aligned} (\lambda -\mathcal {L})\begin{pmatrix} n_j\\ u_j \end{pmatrix} =L\left( \begin{pmatrix} f_j^1 \\ f_j^2 \end{pmatrix} -L^{-1}\begin{pmatrix} 0 \\ \psi _j^f \end{pmatrix} \right) . \end{aligned}$$

Since \(\text {Ran}(\lambda -\mathcal {L})\) is closed, there is \((n,u)\in (H^1)^2\) such that

$$\begin{aligned} (\lambda -\mathcal {L})\begin{pmatrix} n \\ u \end{pmatrix} =L\left( \begin{pmatrix} f^1 \\ f^2 \end{pmatrix} -L^{-1}\begin{pmatrix} 0 \\ \psi ^f \end{pmatrix} \right) , \end{aligned}$$

and this implies that

$$\begin{aligned} \mathcal {A}(\lambda )\begin{pmatrix} n \\ u \\ \tilde{\phi } \\ \tilde{\psi } \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} f^1 \\ f^2 \end{pmatrix} -L^{-1}\begin{pmatrix} 0 \\ \psi ^f \end{pmatrix} \\ 0 \\ 0 \end{pmatrix}, \end{aligned}$$
(9.9)

where \((\widetilde{\phi },\widetilde{\psi })\) satisfies \(\partial _x \widetilde{\phi } = \widetilde{\psi }\) and \( \partial _x\widetilde{\psi } = e^{\phi _c}\widetilde{\phi } - n\). Now adding (9.9) and the RHS of (9.8), we conclude that \(\text {Ran}(\mathcal {A}(\lambda ))\) is closed.

1.4 Non-negativity of the matrix \(S_1\)

We show that the symmetric matrix \(S_1(x,\varepsilon )\) defined in (5.42) is non-negative for all sufficiently small \(\varepsilon >0\).

Since \(S_1\) is symmetric, it is enough to show that the eigenvalues of \(S_1\),

$$\begin{aligned} 0, 0, 2\sqrt{K} R^{(1)}_{11} \pm \sqrt{2K^2( R^{(1)}_{12})^2 + 2( R^{(1)}_{21})^2}, \end{aligned}$$

are non-negative. Recalling the definition of the matrix \(R^{(1)}\) (see (5.29)), \(R_{11}^{(1)}\) is positive since

$$\begin{aligned} \begin{aligned} R_{11}^{(1)}&= \frac{c-u_c}{J} - \frac{c}{c^2-K} \\&= \frac{(c-u_c)(c^2-K) - c[(u_c-c)^2-K]}{J(c^2-K)} \\&= \frac{u_c[c(c-u_c)+K]}{J(c^2-K)} > 0, \end{aligned} \end{aligned}$$

where we have used the solitary wave identity (2.2a) for the inequality.

We check that \(2\sqrt{K} R^{(1)}_{11} - \sqrt{2K^2( R^{(1)}_{12})^2 + 2( R^{(1)}_{21})^2}\) is positive. Since \(R^{(1)}_{11}>0\), it is enough to show that

$$\begin{aligned} \begin{aligned}&4K(R^{(1)}_{11})^2 - 2K^2(R^{(1)}_{12})^2 - 2(R^{(1)}_{21})^2 \\&\quad = \frac{2K}{J_1}\left[ \underbrace{2\left( (c-u_c)(c^2-K)-cJ \right) ^2(1+n_c)^2}_{=:I_1=2(R^{(1)}_{11})^2J_1} \underbrace{- K\left( (c^2-K)(1+n_c)-J \right) ^2(1+n_c)^2}_{=:I_2} \right. \\&\quad \left. \underbrace{-K\left( c^2-K-(1+n_c)J\right) ^2}_{=:I_3}\right] \end{aligned} \end{aligned}$$

is positive, where \(J_1:=J^2(c^2-K)^2(1+n_c)^2>0\). Using the solitary wave identity (2.2a) and the definition of \(J=(c-u_c)^2-K\) (see (2.8)), we have

$$\begin{aligned} \begin{aligned} I_1&= 2\left( (c-u_c)(c^2-K)-c\left( (c-u_c)^2-K \right) \right) ^2(1+n_c)^2 \\&= 2\left( c(c^2-K)-c\left( c(c-u_c)-K(1+n_c) \right) \right) ^2 \\&= 2c^2 ( c u_c+K n_c )^2, \\ I_2&= - K\Big ((c^2-K)(1+n_c)-\left( (c-u_c)^2-K \right) \Big )^2(1+n_c)^2 \\&= - K\Big ((c^2-K)(1+n_c)^2-\big ( c(c-u_c)-K (1+n_c) \big ) \Big )^2 \\&= - K\left( n_c(c^2-K)(2+ n_c)+\left( cu_c+K n_c\right) \right) ^2 \\&= -K\left( cu_c+K n_c\right) ^2 -Kn_c^2(c^2-K)^2(2+n_c)^2 - 2Kn_c(c^2-K)(2+n_c)\left( cu_c+K n_c\right) \\&= -K\left( cu_c+K n_c\right) ^2 -4Kn_c^2(c^2-K)^2 - 4Kn_c(c^2-K)\left( cu_c+K n_c\right) \\&\quad + O\big (|n_c|^3 + |n_c|^2|u_c|\big ), \\ I_3&= -K\left( c^2-K-(1+n_c)\left( (c-u_c)^2-K \right) \right) ^2 \\&= -K\left( cu_c+K n_c\right) ^2. \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \begin{aligned} I_1+I_2+I_3&= 2(c^2-K) ( c u_c+K n_c )^2 -4Kn_c^2(c^2-K)^2 - 4Kn_c(c^2-K)\left( cu_c+K n_c\right) \\&\quad + O\big (|n_c|^3 + |n_c|^2|u_c|\big ) \\&= 2(c^2-K)( c u_c+K n_c )\left( c u_c -K n_c \right) -4Kn_c^2(c^2-K)^2 \\&\quad + O\big (|n_c|^3 + |n_c|^2|u_c|\big ) \\&= 2(c^2-K)( c^2 u_c^2 + K^2 n_c^2 - 2K c^2 n_c^2 ) +O\big (|n_c|^3 + |n_c|^2|u_c|\big ). \end{aligned} \end{aligned}$$

Since \(\frac{cn_c}{1+n_c}=u_c\) from (2.2a), we obtain that

$$\begin{aligned} c^2 u_c^2 + K^2 n_c^2 - 2K c^2 n_c^2 = (c^2-K)^2n_c^2 \big ( 1+O(|n_c|) \big ). \end{aligned}$$

Therefore, we conclude that \(I_1+I_2+I_3>0\) for all sufficiently small \(\varepsilon >0\).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Kwon, B. Linear Stability of Solitary Waves for the Isothermal Euler–Poisson System. Arch Rational Mech Anal 243, 257–327 (2022). https://doi.org/10.1007/s00205-021-01722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01722-8