Skip to main content
Log in

Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula

  • Original Article
  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We provide a mathematical analysis of the effective viscosity of suspensions of spherical particles in a Stokes flow, at low solid volume fraction \(\phi \). Our objective is to go beyond Einstein’s approximation \(\mu _{eff} = (1+\frac{5}{2}\phi ) \mu \). Assuming a lower bound on the minimal distance between the N particles, we are able to identify the \(O(\phi ^2)\) correction to the effective viscosity, which involves pairwise particle interactions. Applying the methodology developped over the last years on Coulomb gases, we are able to tackle the limit \(N \rightarrow +\infty \) of the \(O(\phi ^2)\)-correction, and provide an explicit formula for this limit when the particles centers can be described by either periodic or stationary ergodic point processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almog, Y., Brenner, H.: Global homogenization of a dilute suspension of spheres. arXiv:2003.01480

  2. Ammari, H., Garapon, P., Kang, H., Lee, H.: Effective viscosity properties of dilute suspensions of arbitrarily shaped particles. Asymptot. Anal. 80(3–4), 189–211, 2012

    Article  MathSciNet  MATH  Google Scholar 

  3. Basson, A., Gérard-Varet, D.: Wall laws for fluid flows at a boundary with random roughness. Commun. Pure Appl. Math. 61(7), 941–987, 2008

    Article  MathSciNet  MATH  Google Scholar 

  4. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge 2002

    Google Scholar 

  5. Batchelor, G., Green, J.: The determination of the bulk stress in a suspension of spherical particles at order \(c^2\). J. Fluid Mech. 56, 401–427, 1972

    Article  ADS  MATH  Google Scholar 

  6. Batchelor, G., Green, J.: The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56, 375–400, 1972

    Article  ADS  MATH  Google Scholar 

  7. Beliaev, A.Y., Kozlov, S.M.: Darcy equation for random porous media. Commun. Pure Appl. Math. 49(1), 1–34, 1996

    Article  MathSciNet  Google Scholar 

  8. Blaszczyszyn, B.: Lecture notes on random geometric models—random graphs, point processes and stochastic geometry. Preprint HAL cel-01654766

  9. Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. Commun. Math. Phys. 320(1), 199–244, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chemin, J.-Y.: Perfect Incompressible Fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie

  11. Clausius, R.: Die mechanische Behandlung der Elektricität. Vieweg, Braunshweig 1879

    Book  Google Scholar 

  12. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Orocesses. Vol. II. Probability and Its Applications (New York). Springer, New York, second edition, 2008. General theory and structure

  13. Desvillettes, L., Golse, F., Ricci, V.: The mean-field limit for solid particles in a Navier–Stokes flow. J. Stat. Phys. 131(5), 941–967, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Duerinckx, M., Gloria, A.: Analyticity of homogenized coefficients under Bernoulli perturbations and the Clausius–Mossotti formulas. Arch. Ration. Mech. Anal. 220(1), 297–361, 2016

    Article  MathSciNet  MATH  Google Scholar 

  15. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik. 19, 289–306, 1906

    Article  ADS  MATH  Google Scholar 

  16. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I, Volume 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1994. Linearized steady problems

  17. Gamblin, P., Saint Raymond, X.: On three-dimensional vortex patches. Bull. Soc. Math. France 123(3), 375–424, 1995

    Article  MathSciNet  MATH  Google Scholar 

  18. Guazelli, E., Morris, J.: A Physical Introduction to Suspension Dynamics. Cambridge University Press, Cambridge 2011

    Book  Google Scholar 

  19. Haines, B.M., Mazzucato, A.L.: A proof of Einstein’s effective viscosity for a dilute suspension of spheres. SIAM J. Math. Anal. 44(3), 2120–2145, 2012

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasimoto, H.: On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328, 1959

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hillairet, M., Wu, D.: Effective Viscosity of a Polydispersed Suspension (2019). arXiv:1905.12306

  22. Hinch, E.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720, 1977

    Article  ADS  MATH  Google Scholar 

  23. Höfer, R.M.: Sedimentation of inertialess particles in Stokes flows. Commun. Math. Phys. 360(1), 55–101, 2018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Höfer, R.M., Velázquez, J.J.L.: The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains. Arch. Ration. Mech. Anal. 227(3), 1165–1221, 2018

    Article  MathSciNet  MATH  Google Scholar 

  25. Jabin, P.-E., Otto, F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250(2), 415–432, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994. Translated from the Russian by G. A. Yosifian

  27. Keller, J., Rubenfeld, L.: Extremum principles for slow viscous flows with applications to suspensions. J. Fluid Mech. 30, 97–125, 1967

    Article  ADS  MATH  Google Scholar 

  28. Lévy, T., Sánchez-Palencia, E.: Einstein-like approximation for homogenization with small concentration. II. Navier–Stokes equation. Nonlinear Anal. 9(11), 1255–1268, 1985

    Article  MathSciNet  MATH  Google Scholar 

  29. Maxwell, J.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press, Oxford 1881

    MATH  Google Scholar 

  30. Mecherbet, A.: Sedimentation of particles in Stokes flow, 2018. arXiv:1806.07795

  31. Métivier, G.: Intégrales singulières, cours DEA. https://www.math.u-bordeaux.fr/~gmetivie/ISf.pdf 1981 (revised 2005)

  32. Mossotti, O.: Discussione analitica sul’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso. Mem. Mat. Fis. della Soc. Ital. di Sci. in Modena 24, 49–74, 1850

    Google Scholar 

  33. Niethammer, B., Schubert, R.: A local version of Einstein’s formula for the effective viscosity of suspensions. arXiv:1903.08554

  34. Nunan, K., Keller, J.: Effective viscosity of a periodic suspension. J. Fluid Mech. 142, 269–287, 1984

    Article  ADS  MATH  Google Scholar 

  35. O’brien, R.: A method for the calculation of the effective transport properties of suspensions of interacting particles. J. Fluid Mech. 91(1), 17–39, 1979

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69(3), 519–605, 2016

    Article  MathSciNet  MATH  Google Scholar 

  37. Saito, N.: Concentration dependence of the viscosity of high polymer solutions. i. J. Phys. Soc. Jpn. 5(1), 4–8, 1950

    Article  ADS  Google Scholar 

  38. Sánchez-Palencia, E.: Einstein-like approximation for homogenization with small concentration. I. Elliptic problems. Nonlinear Anal. 9(11), 1243–1254, 1985

    Article  MathSciNet  MATH  Google Scholar 

  39. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743, 2012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083, 2015

    Article  MathSciNet  MATH  Google Scholar 

  41. Serfaty, S.: Coulomb Gases and Ginzburg–Landau Vortices. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich 2015

    MATH  Google Scholar 

  42. Zuzovsky, M., Adler, P., Brenner, H.: Spatially periodic suspensions of convex particles in linear shear flows. iii. dilute arrays of spheres suspended in newtonian fluids. Phys. Fluids 26, 1714, 1983

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Sylvia Serfaty for explaining to us her work on Coulomb gases and being a source of fruitful suggestions. We acknowledge the support of the SingFlows Project, Grant ANR-18-CE40-0027 of the French National Research Agency (ANR). D. G.-V. acknowledges the support of the Institut Universitaire de France. M.H. acknowledges the support of Labex Numev Convention Grants ANR-10-LABX-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gérard-Varet.

Additional information

Communicated by S. Serfaty

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 2.4

A Proof of Lemma 2.4

For any open set U, we denote \(\fint _U = \frac{1}{|U|} \int _U\). By (H2), we have

$$\begin{aligned} d := \frac{c}{4} N^{-1/3} \leqq \min _{i \ne j} \frac{|x_i - x_j|}{4}. \end{aligned}$$

We write

$$\begin{aligned} A'_i = A'_{i,1} + A'_{i,2} + A'_{i,3}, \end{aligned}$$

with

$$\begin{aligned} A'_{i,1}&= \sum _{j\ne i} \fint _{B(x_j,d)}\Big ( D(v[A_j])(x_i - x_j) - D(v[A_j])(x_i - x') \Bigr ) \mathrm{d}x', \\ A'_{i,2}&= \sum _{j\ne i} \fint _{B(x_j,d)} \Big ( D(v[A_j])(x_i - x') - \fint _{B_i} D(v[A_j])(x - x') \mathrm{d}x \Bigr ) \mathrm{d}x', \\ A'_{i,3}&= \sum _{j\ne i} \fint _{B(x_j,d)} \fint _{B_i} D(v[A_j])(x - x') \mathrm{d}x \mathrm{d}x'. \end{aligned}$$

Setting \(y_i = N^{-1/3} x_i\), using that for \(i \ne j\), \(|y_i - y_j| \geqq \frac{1}{2} (c + |y_i - y_j| ) \geqq c\),

$$\begin{aligned} |A'_{i,1}| \leqq C a^3 \sum _{j\ne i} \frac{d}{|x_i - x_j|^4} |A_j| \leqq C' \phi \sum _{j} \frac{|A_j|}{(c + |y_i - y_j|)^4}. \end{aligned}$$

From the inequality (2.35), applied with \(a_{ij} = \frac{1}{(c + |y_i - y_j|)^4}\) and \(b_j = A_j\), we deduce

$$\begin{aligned} \sum _{i} |A'_{i,1}|^q \, \leqq \mathcal {C} \phi ^q \sum _{j} |A_j|^q. \end{aligned}$$

Similarly,

$$\begin{aligned} |A'_{i,2}| \leqq C a^3 \sum _{j\ne i} \frac{a}{|x_i - x_j|^4} |A_j| \leqq C' \phi ^{\frac{4}{3}} \sum _{j} \frac{|A_j|}{c + |y_i - y_j|^4}. \end{aligned}$$

This leads to

$$\begin{aligned} \sum _{i} |A'_{i,2}|^q \, \leqq \mathcal {C} \phi ^{\frac{4q}{3}} \sum _{j} |A_j|^q. \end{aligned}$$

The last term is the most difficult. We follow [21]. Let us remind ourselves that

$$\begin{aligned} v[A] =-\frac{5}{2} A : (x \otimes x) \frac{a^3 x}{|x|^5}. \end{aligned}$$

Let \(\chi _d(x) = \chi (x/d)\) a smooth function that is 0 in B(0, d), 1 outside B(0, 2d). Introducing the function \(F_A = \sum _{j} A_j 1_{B(x_j,d)}\), using that \(d \leqq \min _{i \ne j} \frac{|x_i - x_j|}{4}\), we can write that

$$\begin{aligned} A'_{i,3} = \frac{1}{d^3} \int _{B_i} \int _{\mathbb {R}^3} \chi _d(x_i-x') \mathbf {K}(x-x')F_A(x') \mathrm{d}x' \mathrm{d}x, \end{aligned}$$

where \(\mathbf {K}(x)\) is an endomorphism of the space of symmetric matrices, defined by

$$\begin{aligned} \mathbf {K}(x)A = -\frac{5}{2} \Big ( \frac{4\pi }{3}\Big )^{-2} D \Big ( A : (x \otimes x) \frac{x}{|x|^5} \Big ). \end{aligned}$$

We then split \(A'_{i,3} = M_i + N_i\), with

$$\begin{aligned} M_i&= \frac{1}{d^3} \int _{B_i} \int _{\mathbb {R}^3} \chi _d(x-x') \mathbf {K}(x-x') F_A(x') \mathrm{d}x' \mathrm{d}x, \\ N_i&= \frac{1}{d^3} \int _{B_i} \int _{\mathbb {R}^3} (\chi _d(x_i-x') - \chi _d(x-x')) \mathbf {K}(x-x')F_A(x') \mathrm{d}x' \mathrm{d}x. \end{aligned}$$

By Hölder inequality,

$$\begin{aligned} |M_i|^q \leqq \frac{1}{d^{3q}}a^{\frac{3q}{p}} \Vert \big ( \chi _d \mathbf {K}\bigr ) \star F_A \Vert _{L^q(B_i)}^q, \end{aligned}$$

and so

$$\begin{aligned} \sum _i |M_i|^q \leqq \frac{1}{d^{3q}}a^{\frac{3q}{p}} \Vert \big ( \chi _\mathrm{d}\mathbf {K}\bigr ) \star F_A \Vert _{L^q(\mathbb {R}^3)}^q. \end{aligned}$$

The kernel \(\chi _d \mathbf {K}\) enters the framework of the Calderón–Zygmund theorem, see for instance [31, Chapters 4 and 5]: for all \(1< q <+\infty \), the operator \(\big ( \chi _\mathrm{d}\mathbf {K}\bigr ) \, \star \) is continuous from \(L^q(\mathbb {R}^3)\) to \(L^q(\mathbb {R}^3)\), with

$$\begin{aligned} \Vert \big ( \chi _\mathrm{d}\mathbf {K}\bigr ) \star \Vert _{\mathcal {L}(L^q, L^q)} \leqq C_q. \end{aligned}$$

We stress that the constant \(C_q\) depends only on q, and not on d, as can be seen from the rescaling \(x' := x'/d\). It follows that

$$\begin{aligned} \sum _i |M_i|^q \leqq \frac{C}{d^{3q}}a^{\frac{3q}{p}} \Vert F_A\Vert _{L^q(\mathbb {R}^3)}^q. \end{aligned}$$

As the balls \(B(x_j,d)\) are disjoint, \( |\sum A_j 1_{B(x_j,d)}|^q = \sum |A_j|^q 1_{B(x_j,d)}\), so that \(\Vert F_A\Vert _{L^q(\mathbb {R}^3)}^q = \frac{4\pi }{3} \sum |A_j|^q d^3\), and

$$\begin{aligned} \sum _i |M_i|^q \leqq C' \left( \frac{a}{d}\right) ^{\frac{3q}{p}} \sum _i |A_i|^q \leqq \mathcal {C} \phi ^{\frac{q}{p}} \sum _i |A_i|^q. \end{aligned}$$

To bound \(N_i\), we notice that for all \(x \in B_i\), the support of \(x' \rightarrow \chi _d(x_i-x') - \chi _d(x-x')\) is included in

$$\begin{aligned} \Big ( B(x_i, 2d) \cup B(x, 2d) \Bigr ) \setminus \Big ( B(x,d) \cap B(x_i,d) \Bigr ) \subset B(x, 2d+a) \setminus B(x,d-a) \end{aligned}$$

(remark that by definition of \(\phi \), a is less than d for \(\phi \) small enough). We get

$$\begin{aligned} |N_i|^q \leqq \frac{1}{d^{3q}}a^{\frac{3q}{p}} \Vert \big | 1_{B(0, 2d+a) \setminus B(0,d-a)} \mathbf {K} \big | \star \big | F_A \big | \Vert _{L^q(B_i)}^q, \end{aligned}$$

so that

$$\begin{aligned} \sum _i |N_i|^q&\leqq \frac{C}{d^{3q}}a^{\frac{3q}{p}} \Vert \big | 1_{B(0, 2d+a) \setminus B(0,d-a)}|x|^{-3} \big | \star \big | F_A \big | \Vert _{L^q(\mathbb {R}^3)}^q \\&\leqq \frac{C'}{d^{3q}}a^{\frac{3q}{p}} \big | \ln \big (\frac{2d+a}{d-a}\big ) \big |^q \Vert F_A\Vert _{L^q(\mathbb {R}^3)}^q \\&\leqq C'' \left( \frac{a}{d}\right) ^{\frac{3q}{p}} \sum _i |A_i|^q \leqq \mathcal {C} \phi ^{\frac{q}{p}} \sum _i |A_i|^q, \end{aligned}$$

using that, for \(\phi \ll 1\), \(a \ll d\) and \(\big |\ln \big (\frac{2d+a}{d-a}\big )\big |\) is bounded by an absolute constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard-Varet, D., Hillairet, M. Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula. Arch Rational Mech Anal 238, 1349–1411 (2020). https://doi.org/10.1007/s00205-020-01567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01567-7

Navigation