Skip to main content

On Well-Posedness for General Hierarchy Equations of Gross–Pitaevskii and Hartree Type

Abstract

Gross–Pitaevskii and Hartree hierarchies are infinite systems of coupled PDEs emerging naturally from the mean field theory of Bose gases. Their solutions are known to be related to initial value problems, in particular the Gross–Pitaevskii and Hartree equations. Due to their physical and mathematical relevance, the issues of well-posedness and uniqueness for these hierarchies have recently been studied thoroughly using specific nonlinear and combinatorial techniques. In this article, we introduce a new approach for the study of such hierarchy equations by firstly establishing a duality between them and certain Liouville equations, and secondly, solving the uniqueness and existence questions for the latter. As an outcome, we formulate a hierarchy equation starting from any initial value problem which is U(1)-invariant and prove a general principle which can be stated formally as follows:

  1. (i)

    The uniqueness of weak solutions of an initial value problem implies the uniqueness of solutions for the related hierarchy equation.

  2. (ii)

    The existence of solutions for an initial value problem implies the existence of solutions for the related hierarchy equation.

In particular, several new well-posedness results, as well as a counterexample to uniqueness for the Gross–Pitaevskii hierarchy equation, are proved. The novelty in our work lies in the aforementioned duality and the use of Liouville equations with powerful transport techniques extended to infinite dimensional functional spaces.

This is a preview of subscription content, access via your institution.

Notes

  1. We mean that g defines a Borel map G as in (36) for some \(s,\sigma \geqq 0\) and it is bounded on bounded sets.

References

  1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic NLSE in dimension one. Asymptot. Anal. 40(2), 93–108, 2004

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Bernard, P.: Uniqueness of signed measures solving the continuity equation for Osgood vector fields. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(3), 237–245, 2008

    MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data. Comm. Pure Appl. Math. 64(9), 1199–1242, 2011

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005

  5. Ammari, Z., Breteaux, S.: Propagation of chaos for many-boson systems in one dimension with a point pair-interaction. Asymptot. Anal. 76(3–4), 123–170, 2012

    MathSciNet  MATH  Google Scholar 

  6. Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50(4), 042107, 16, 2009

    MathSciNet  MATH  Google Scholar 

  7. Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. (9) 95(6), 585–626, 2011

    MathSciNet  MATH  Google Scholar 

  8. Ammari, Z., Falconi, M.: Wigner measures approach to the classical limit of the Nelson model: convergence of dynamics and ground state energy. J. Stat. Phys. 157(2), 330–362, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  9. Ammari, Z., Falconi, M.: Bohr’s correspondence principle for the renormalized Nelson model. SIAM J. Math. Anal. 49(6), 5031–5095, 2017

    MathSciNet  MATH  Google Scholar 

  10. Ammari, Z., Falconi, M., Pawilowski, B.: On the rate of convergence for the mean field approximation of bosonic many-body quantum dynamics. Commun. Math. Sci. 14(5), 1417–1442, 2016

    MathSciNet  MATH  Google Scholar 

  11. Ammari, Z., Liard, Q.: On uniqueness of measure-valued solutions to Liouville’s equation of Hamiltonian PDEs. Discrete Contin. Dyn. Syst. 38(2), 723–748, 2018

    MathSciNet  MATH  Google Scholar 

  12. Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9(8), 1503–1574, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  13. Ammari, Z., Nier, F.: Mean field propagation of infinite-dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(1), 155–220, 2015

    MathSciNet  MATH  Google Scholar 

  14. Anapolitanos, I.: Rate of convergence towards the Hartree–von Neumann limit in the mean-field regime. Lett. Math. Phys. 98(1), 1–31, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  15. Anapolitanos, I., Hott, M., Hundertmark, D.: Derivation of the Hartree equation for compound Bose gases in the mean field limit. Rev. Math. Phys. 29(7), 175002, 282, 2017

    MathSciNet  MATH  Google Scholar 

  16. Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the \(N\)-particle Schrödinger equation. Methods Appl. Anal. 7(2), 275–293, 2000

    MathSciNet  MATH  Google Scholar 

  17. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics, volume 7 of Springer Briefs in Mathematical Physics. Springer, Cham, 2016

  18. Bernard, P.: Young measures, superposition and transport. Indiana Univ. Math. J. 57(1), 247–275, 2008

    MathSciNet  MATH  Google Scholar 

  19. Bernard, P.: Some remarks on the continuity equation. In: Séminaire: Équations aux Dérivées Partielles. 2008–2009, Sémin. Équ. Dériv. Partielles, pages Exp. No. VI, 12. École Polytech., Palaiseau, 2010

  20. Bogoliubov, N.N.: Lectures on Quantum Statistics. Vol. I: Quantum Statistics. Translated from the Ukrainian. English edition revised by N. N. Bogoliubov. Edited by L. Klein and S. Glass. Gordon and Breach, Science Publishers, New York, 1967

  21. Castella, F.: Solving ordinary differential equations when the coefficients have low regularity: a kinetic point of view (after R. Di Perna and P. L. Lions). In: Long-Range Interacting Systems, pp. 11–12, 279–317. Oxford University Press, Oxford, 2010

  22. Cazenave, T.: Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, 2003

  23. Cazenave, T., Weissler, F.B.: The Cauchy problem for the nonlinear Schrödinger equation in \(H^1\). Manuscr. Math. 61(4), 477–494, 1988

    MATH  Google Scholar 

  24. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14(10), 807–836, 1990

    MathSciNet  MATH  Google Scholar 

  25. Chen, L., Lee, J.O.: Rate of convergence in nonlinear Hartree dynamics with factorized initial data. J. Math. Phys. 52(5), 052108, 25, 2011

    MathSciNet  MATH  Google Scholar 

  26. Chen, T., Pavlović, N., Tzirakis, N.: Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy. In: Recent Advances in Harmonic Analysis and Partial Differential Equations, volume 581 of Contemporary Mathematics, pp. 39–62. American Mathematics Society, Providence, 2012

  27. Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: On the well-posedness and scattering for the Gross–Pitaevskii hierarchy via quantum de Finetti. Lett. Math. Phys. 104(7), 871–891, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  28. Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti. Comm. Pure Appl. Math. 68(10), 1845–1884, 2015

    MathSciNet  MATH  Google Scholar 

  29. Chen, T., Pavlović, N.: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Discrete Contin. Dyn. Syst. 27(2), 715–739, 2010

    MathSciNet  MATH  Google Scholar 

  30. Chen, T., Pavlović, N.: Recent results on the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Math. Model. Nat. Phenom. 5(4), 54–72, 2010

    MathSciNet  MATH  Google Scholar 

  31. Chen, T., Pavlović, N.: The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. Funct. Anal. 260(4), 959–997, 2011

    MathSciNet  MATH  Google Scholar 

  32. Chen, T., Pavlović, N.: A new proof of existence of solutions for focusing and defocusing Gross–Pitaevskii hierarchies. Proc. Am. Math. Soc. 141(1), 279–293, 2013

    MathSciNet  MATH  Google Scholar 

  33. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in \(d=3\) based on spacetime norms. Ann. Henri Poincaré 15(3), 543–588, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  34. Chen, T., Pavlović, N., Tzirakis, N.: Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(5), 1271–1290, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  35. Chen, T., Taliaferro, K.: Derivation in strong topology and global well-posedness of solutions to the Gross–Pitaevskii hierarchy. Comm. Partial Differ. Equ. 39(9), 1658–1693, 2014

    MathSciNet  MATH  Google Scholar 

  36. Chen, X., Holmer, J.: On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics. Arch. Ration. Mech. Anal. 210(3), 909–954, 2013

    MathSciNet  MATH  Google Scholar 

  37. Chen, X., Holmer, J.: Correlation structures, many-body scattering processes, and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not. 2016(10), 3051–3110, 2016

    MathSciNet  MATH  Google Scholar 

  38. Chen, X., Holmer, J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation. Arch. Ration. Mech. Anal. 221(2), 631–676, 2016

    MathSciNet  MATH  Google Scholar 

  39. Chen, X., Holmer, J.: On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction. J. Eur. Math. Soc. 18(6), 1161–1200, 2016

    MathSciNet  MATH  Google Scholar 

  40. Chen, X., Holmer, J.: Focusing quantum many-body dynamics. II: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D. Anal. PDE 10(3), 589–633, 2017

    MathSciNet  MATH  Google Scholar 

  41. Chen, X., Holmer, J.: The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution. Int. Math. Res. Not. 14, 4173–4216, 2017

    MathSciNet  MATH  Google Scholar 

  42. Chen, X., Smith, P.: On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy. Anal. PDE 7(7), 1683–1712, 2014

    MathSciNet  MATH  Google Scholar 

  43. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547, 1989

    ADS  MathSciNet  MATH  Google Scholar 

  44. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179(2), 265–283, 2006

    MathSciNet  MATH  Google Scholar 

  45. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Comm. Pure Appl. Math. 59(12), 1659–1741, 2006

    MathSciNet  MATH  Google Scholar 

  46. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  47. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156, 2009

    MathSciNet  MATH  Google Scholar 

  48. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370, 2010

    MathSciNet  MATH  Google Scholar 

  49. Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205, 2001

    MathSciNet  MATH  Google Scholar 

  50. Fröhlich, J., Knowles, A., Pizzo, A.: Atomism and quantization. J. Phys. A 40(12), 3033–3045, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  51. Fröhlich, J., Graffi, S., Schwarz, S.: Mean-field- and classical limit of many-body Schrödinger dynamics for bosons. Comm. Math. Phys. 271(3), 681–697, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  52. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Comm. Math. Phys. 288(3), 1023–1059, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  53. Furioli, G., Terraneo, E.: Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in \(\dot{H}{}^s({{\mathbb{R}}}^n)\). Commun. Contemp. Math. 5(3), 349–367, 2003

    MathSciNet  MATH  Google Scholar 

  54. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Comm. Math. Phys. 66(1), 37–76, 1979

    ADS  MathSciNet  MATH  Google Scholar 

  55. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. II. Comm. Math. Phys. 68(1), 45–68, 1979

    ADS  MathSciNet  MATH  Google Scholar 

  56. Gottlieb, A.D.: Propagation of chaos in classical and quantum kinetics. In: Stochastic Analysis and Mathematical Physics II, Trends Mathematics, pp. 135–146. Birkhäuser, Basel, 2003

  57. Gressman, P., Sohinger, V., Staffilani, G.: On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy. J. Funct. Anal. 266(7), 4705–4764, 2014

    MathSciNet  MATH  Google Scholar 

  58. Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting bosons. I. Comm. Math. Phys. 324(2), 601–636, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  59. Han, Z., Fang, D.: On the unconditional uniqueness for NLS in \(\dot{H}{}^s\). SIAM J. Math. Anal. 45(3), 1505–1526, 2013

    MathSciNet  MATH  Google Scholar 

  60. Hepp, K.: The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35, 265–277, 1974

    ADS  MathSciNet  Google Scholar 

  61. Herr, S., Sohinger, V.: The Gross–Pitaevskii hierarchy on general rectangular tori. Arch. Ration. Mech. Anal. 220(3), 1119–1158, 2016

    MathSciNet  MATH  Google Scholar 

  62. Hong, Y., Taliaferro, K., Xie, Z.: Unconditional uniqueness of the cubic Gross–Pitaevskii hierarchy with low regularity. SIAM J. Math. Anal. 47(5), 3314–3341, 2015

    MathSciNet  MATH  Google Scholar 

  63. Hong, Y., Taliaferro, K., Xie, Z.: Uniqueness of solutions to the 3D quintic Gross–Pitaevskii hierarchy. J. Funct. Anal. 270(1), 34–67, 2016

    MathSciNet  MATH  Google Scholar 

  64. Hudson, R.L.: Analogs of de Finetti’s theorem and interpretative problems of quantum mechanics. Found. Phys. 11(9–10), 805–808, 1981

    ADS  MathSciNet  Google Scholar 

  65. Hudson, R.L.: Measurements of entanglement and a quantum de Finetti theorem. Int. J. Theor. Phys. 43(7–8), 1841–1847, 2004

    MathSciNet  MATH  Google Scholar 

  66. Hudson, R.L., Moody, G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete33(4), 343–351, 1975/76

  67. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46(1), 113–129, 1987

    MathSciNet  MATH  Google Scholar 

  68. Kato, T.: On nonlinear Schrödinger equations. II. \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306, 1995

    MathSciNet  MATH  Google Scholar 

  69. Klainerman, S., Machedon, M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Comm. Math. Phys. 279(1), 169–185, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  70. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Comm. Math. Phys. 298(1), 101–138, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  71. Kuz, E.: Rate of convergence to mean field for interacting bosons. Comm. Partial Differ. Equ. 40(10), 1831–1854, 2015

    MathSciNet  MATH  Google Scholar 

  72. Lennard, C.: \({{\cal{C}}}_1\) is uniformly Kadec–Klee. Proc. Am. Math. Soc. 109(1), 71–77, 1990

    MathSciNet  MATH  Google Scholar 

  73. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621, 2014

    MathSciNet  MATH  Google Scholar 

  74. Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express. 1, 48–63, 2015

    MathSciNet  MATH  Google Scholar 

  75. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Comm. Pure Appl. Math. 68(3), 413–471, 2015

    MathSciNet  MATH  Google Scholar 

  76. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation, volume 34 of Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2005

  77. Jing, L., Yushun, X.: Unconditional uniqueness of solution for \(\dot{H}^{s_c}\) critical NLS in high dimensions. J. Math. Anal. Appl. 436(2), 1214–1222, 2016

    MathSciNet  MATH  Google Scholar 

  78. Maniglia, S.: Probabilistic representation and uniqueness results for measure-valued solutions of transport equations. J. Math. Pures Appl. (9) 87(6), 601–626, 2007

    MathSciNet  MATH  Google Scholar 

  79. Merkle, M.J.: On weak convergence of measures on Hilbert spaces. J. Multivar. Anal. 29(2), 252–259, 1989

    MathSciNet  MATH  Google Scholar 

  80. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, No. 3. Academic Press, New York, 1967

  81. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  82. Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003, 45, 2015

    MathSciNet  MATH  Google Scholar 

  83. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Comm. Math. Phys. 291(1), 31–61, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  84. Rogers, K.M.: Unconditional well-posedness for subcritical NLS in \(H^s\). C. R. Math. Acad. Sci. Paris 345(7), 395–398, 2007

    MathSciNet  MATH  Google Scholar 

  85. Simon, B.: Trace Ideals and Their Applications, volume 120 of Mathematical Surveys and Monographs, 2nd ed. American Mathematical Society, Providence, 2005

  86. Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \({{\mathbb{T}}}^3\) from the dynamics of many-body quantum systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1337–1365, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  87. Sohinger, V.: Local existence of solutions to randomized Gross–Pitaevskii hierarchies. Trans. Am. Math. Soc. 368(3), 1759–1835, 2016

    MathSciNet  MATH  Google Scholar 

  88. Sohinger, V., Staffilani, G.: Randomization and the Gross–Pitaevskii hierarchy. Arch. Ration. Mech. Anal. 218(1), 417–485, 2015

    MathSciNet  MATH  Google Scholar 

  89. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615, 1980

    ADS  MathSciNet  Google Scholar 

  90. Störmer, E.: Symmetric states of infinite tensor products of \(C^{\ast } \)-algebras. J. Funct. Anal. 3, 48–68, 1969

    MathSciNet  MATH  Google Scholar 

  91. Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcial. Ekvac. 30(1), 115–125, 1987

    MathSciNet  MATH  Google Scholar 

  92. Win, Y.Y.S., Tsutsumi, Y.: Unconditional uniqueness of solution for the Cauchy problem of the nonlinear Schrödinger equation. Hokkaido Math. J. 37(4), 839–859, 2008

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ammari.

Additional information

Communicated by G. Friesecke

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

In this appendix we recall a few useful known results concerning the topology of the space of trace class operators and the space of probability measures as well as some useful arguments for measurable sets and maps.

Kadec–Klee Property

A dual Banach space \((E,||\cdot ||)\) has the Kadec–Klee property (KK*) if any sequence \((x_n)_{n\in {\mathbb {N}}}\) which converges with respect to the weak-\(*\) topology to a limit \(x\in E\) with \(\lim _n ||x_n||=||x||\), satisfies \(x_n\rightarrow x\) in the norm topology of E (see for example  [72, 85]).

Theorem A.1

The space of trace class-operators \({\mathscr {L}}^1({\mathfrak {H}})\), over a separable Hilbert space \({\mathfrak {H}}\), satisfies the Kadec–Klee property (KK*).

Weak and Strong Narrow Convergence

Let \({\mathfrak {H}}\) be a separable Hilbert space and \(X_1\) its closed unit ball \(B_{\mathfrak {H}}(0,1)\). The set of Borel probability measures \({\mathfrak {P}}(X_1)\) can be endowed with the weak and strong narrow convergence topology defined according to (20)–(21). Let \((e_i)_{i\in {\mathbb {N}}}\) be an O.N.B of the Hilbert space \({\mathfrak {H}}\). We have the following two useful results:

Theorem B.1

Let \((\mu ,(\mu _j)_{j\in {\mathbb {N}}})\) be a sequence in \({\mathfrak {P}}(X_1)\). Then the pointwise convergence of the characteristic functions

$$\begin{aligned} {\hat{\mu }}_j(y)=\int _{X_1} e^{-i \mathrm{Re}\langle x,y\rangle } \,\mathrm{d}\mu _j \;\rightarrow {\hat{\mu }}(y)=\int _{X_1} e^{-i \mathrm{Re}\langle x,y\rangle } \,\mathrm{d}\mu , \quad \forall y\in {\mathfrak {H}} \end{aligned}$$

implies the weak narrow converges of the measures \(\mu _j\rightharpoonup \mu \).

Proof

Since the closed unit ball \(X_1\) is compact and separable with respect to the weak topology (induced for instance by the metric \(d_w\) in (22)), then by Prokhorov’s theorem the sequence \((\mu _j)_{j\in {\mathbb {N}}}\) is relatively sequentially compact in \({\mathfrak {P}}(X_1)\) with respect to the weak narrow topology. Moreover, \((\mu _j)_{j\in {\mathbb {N}}}\) admits a unique cluster point, because otherwise, the characteristic functions \({\hat{\mu }}_j\) would converge pointwisely to two distinct limits. Thus, the sequence \((\mu _j)_{j\in {\mathbb {N}}}\) should converge weakly narrowly to the measure \(\mu \). \(\quad \square \)

Theorem B.2

Let \((\mu ,(\mu _j)_{j\in {\mathbb {N}}})\) be a sequence in \({\mathfrak {P}}(X_1)\). Then

$$\begin{aligned} \left( \mu _j\rightharpoonup \mu \text { and } \quad \forall \varepsilon >0, \quad \lim _{N\rightarrow \infty } \sup _{j\in {\mathbb {N}}} \int _{X_1}\; 1_{\{\sum _{i=N}^\infty |\langle \varphi , e_i\rangle |^2\geqq \varepsilon \}} \; \mathrm{d}\mu _j=0 \right) \;\Longleftrightarrow \; \mu _j\rightarrow \mu . \end{aligned}$$

Proof

We refer, for instance, to [79, Theorem 1]. \(\quad \square \)

Measurable Maps and Sets

Let I be a bounded open interval and consider the space \({\mathfrak {X}}={\mathscr {Z}}_{-\sigma }\times {\mathscr {C}}({\bar{I}},{\mathscr {Z}}_{-\sigma })\), introduced in Section 4.1, and endowed with the two norms

$$\begin{aligned} ||(x,\varphi )||_{{\mathfrak {X}}}= & {} ||x||_{{\mathscr {Z}}_{-\sigma }}+\sup _{t\in {\bar{I}}}||\varphi (t)||_{{\mathscr {Z}}_{-\sigma }}, \\ ||(x,\varphi )||_{{\mathfrak {X}}_{w}}= & {} ||x||_{{\mathscr {Z}}_{-\sigma ,w}}+\sup _{t\in {\bar{I}}}||\varphi (t)||_{{\mathscr {Z}}_{-\sigma ,w}}, \end{aligned}$$

where

$$\begin{aligned} ||x||^2_{{\mathscr {Z}}_{-\sigma ,w}}=\sum _{n\in {\mathbb {N}}} \frac{1}{2^n} |\langle e_n, x\rangle _{{\mathscr {Z}}_{-\sigma }}|^2 ,\qquad ||\varphi (t)||_{{\mathscr {Z}}_{-\sigma ,w}}^2=\sum _{n\in {\mathbb {N}}} \frac{1}{2^n} |\langle e_n, \varphi (t)\rangle _{{\mathscr {Z}}_{-\sigma }}|^2, \end{aligned}$$

with \((e_n)_{n\in {\mathbb {N}}}\) is an O.N.B. of \({\mathscr {Z}}_{-\sigma }\).

Lemma C.1

The \(\sigma \)-algebras of Borel sets of \(({\mathfrak {X}},||\cdot ||_{{\mathfrak {X}}} )\) and \(({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}_{w}})\) coincide.

Proof

Let \(\imath : ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}}) \rightarrow ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}_{w}})\) be the identity map. It is clear that \(\imath \) is continuous and hence it is measurable. This implies the following inclusion of \(\sigma \)-algebras:

$$\begin{aligned} {\mathscr {T}}({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}_{w}})\subset {\mathscr {T}}({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}}). \end{aligned}$$

To show the opposite inclusion, one uses an approximation of identity:

$$\begin{aligned} \Psi _{\varepsilon }: ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}_{w}})\longrightarrow & {} ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}})\\ (x,\varphi )\longrightarrow & {} \sum _{n\in {\mathbb {N}}} \frac{1}{1+n\varepsilon } \, \big (\langle x, e_n\rangle _{{\mathscr {Z}}_{-\sigma }} e_n ; \langle \varphi , e_n\rangle _{{\mathscr {Z}}_{-\sigma }} e_n\big ), \end{aligned}$$

for some \(\varepsilon >0\). It is clear that \(\Psi _\varepsilon \) is continuous. Furthermore, for x and \(\varphi \) fixed,

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \sum _{n\in {\mathbb {N}}} \frac{1}{1+n\varepsilon } \,\langle x, e_n\rangle _{{\mathscr {Z}}_{-\sigma }} e_n =x\quad \text { in } ({\mathscr {Z}}_{-\sigma },||\cdot ||_{{\mathscr {Z}}_{-\sigma }}), \end{aligned}$$

and

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \sum _{n\in {\mathbb {N}}} \frac{1}{1+n\varepsilon } \langle \varphi , e_n\rangle _{{\mathscr {Z}}_{-\sigma }} e_n=\varphi \quad \text { in } {\mathscr {C}}({\bar{I}},{\mathscr {Z}}_{-\sigma }). \end{aligned}$$

The last limit follows using the fact that \(\varphi ({\bar{I}})\) is compact and the operator \(\sum _{n\in {\mathbb {N}}} \frac{1}{1+n\varepsilon } |e_n\rangle \langle e_n|\) converges strongly, as \(\varepsilon \rightarrow 0\), to the identity on \({\mathscr {Z}}_{-\sigma }\). Since one can show that \(\Psi _\varepsilon \) converges pointwisely to the identity map \(\imath ^{-1}: ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}_{w}}) \rightarrow ({\mathfrak {X}}, ||\cdot ||_{{\mathfrak {X}}})\), the opposite inclusion holds true. \(\quad \square \)

Lemma C.2

Let (Md) be a metric space. Then for any bounded measurable function \(f:[a,b]\times M\rightarrow {\mathbb {R}}\), the mapping

$$\begin{aligned} \begin{aligned} M&\longrightarrow {\mathbb {R}}\\ x&\longrightarrow \int _a^b f(\tau ,x) \,\mathrm{d}\tau \end{aligned} \quad \text { is measurable}. \end{aligned}$$
(84)

Proof

It suffices to use the monotone class theorem. Consider the set

$$\begin{aligned} {\mathscr {F}}:=\{f:[a,b]\times M\rightarrow {\mathbb {R}}\text { bounded measurable and satisfying } (84)\}. \end{aligned}$$

Then one checks that

  1. 1.

    \({\mathscr {F}}\) is stable with respect to addition and scalar multiplication.

  2. 2.

    \({\mathscr {F}}\) is stable with respect to monotone convergence, that is: if \((f_n)_{n\in {\mathbb {N}}}\) is a bounded sequence of non-negative function in \({\mathscr {F}}\) such that \((f_n)_{n\in {\mathbb {N}}}\) is a non-decreasing sequence of functions which converges pointwisely to a function f, as \(n\rightarrow \infty \), then \(f\in {\mathscr {F}}\).

  3. 3.

    The set \({\mathscr {A}}:=\{ F\subset [a,b]\times M , F \text { closed } \}\) is a \(\pi \)-system and for any \(F\in {\mathscr {A}}\) the indicator function \(1_{F}\) belongs to \({\mathscr {F}}\).

Consequently, \({\mathscr {F}}\) contains all real-valued bounded measurable functions on \([a,b]\times M\). \(\quad \square \)

The following observation is useful in Propositions 1.81.9 where we consider the uniqueness of hierarchy equations related to the NLS equation (33) with a nonlinearity g given by (41).

Lemma C.3

The space \(L^2({\mathbb {R}}^d)\cap L^r({\mathbb {R}}^d)\) is a Borel subset of \((L^2({\mathbb {R}}^d),||\cdot ||_{L^2({\mathbb {R}}^d)})\). Furthermore, there exists a Borel extension \(G:L^2({\mathbb {R}}^d)\rightarrow H^{-1}({\mathbb {R}}^d)\) of the mapping

$$\begin{aligned} g:L^2({\mathbb {R}}^d)\cap L^r({\mathbb {R}}^d)\rightarrow L^{r'}({\mathbb {R}}^d) \end{aligned}$$

given in (41) and satisfying (42).

Proof

Let \(\varphi _n\) be a mollifier (that is, \(\varphi \in {\mathscr {C}}_0^\infty ({\mathbb {R}}^d)\), \(\varphi \geqq 0\), \(\int _{{\mathbb {R}}^d} \varphi (x) \mathrm{d}x=1\) and \(\varphi _n(x):=n^d \varphi (nx)\)). Then the mapping

$$\begin{aligned} T_n: L^2({\mathbb {R}}^d)\longrightarrow & {} {\mathbb {R}}_+ \\ f\longrightarrow & {} ||\varphi _n*f||_{L^r} \end{aligned}$$

is well defined and continuous thanks to Young’s inequality. Moreover, one easily checks that

$$\begin{aligned} \lim _{n\rightarrow \infty } T_n(f)=\left\{ \begin{aligned} ||f||_{L^r}&\quad \text { if } f\in L^2({\mathbb {R}}^d)\cap L^r({\mathbb {R}}^d)&\\ \infty&\quad \text { ifnot.}&\end{aligned} \right. \end{aligned}$$

Hence, \(L^2({\mathbb {R}}^d)\cap L^r({\mathbb {R}}^d)\) is a measurable subset of \(L^2({\mathbb {R}}^d)\). Consider the mapping

$$\begin{aligned} G: L^2({\mathbb {R}}^d)\longrightarrow & {} L^{r'}({\mathbb {R}}^d)\subset H^{-1}({\mathbb {R}}^d) \\ u\longrightarrow & {} 1_{L^2\cap L^r}(u) \,g(u). \end{aligned}$$

Then G is a Borel map extending g. Indeed, the sequences of mapping \(g_n\), defined as

$$\begin{aligned} g_n: L^2({\mathbb {R}}^d)\longrightarrow & {} H^{-1}({\mathbb {R}}^d) \\ u\longrightarrow & {} 1_{L^2\cap L^r}(u) \,g(\varphi _n*u), \end{aligned}$$

is measurable, since \(u\rightarrow g(\varphi _n*u)\) are continuous using the assumption (42) and \(\lim _{n\rightarrow \infty }g_n(u)=G(u)\) for any \(u\in L^2({\mathbb {R}}^d)\). \(\quad \square \)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, Z., Liard, Q. & Rouffort, C. On Well-Posedness for General Hierarchy Equations of Gross–Pitaevskii and Hartree Type. Arch Rational Mech Anal 238, 845–900 (2020). https://doi.org/10.1007/s00205-020-01557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01557-9