Abstract
We apply a quasistatic nonlinear model for nonsimple viscoelastic materials at a finite-strain setting in Kelvin’s-Voigt’s rheology to derive a viscoelastic plate model of von Kármán type. We start from time-discrete solutions to a model of three-dimensional viscoelasticity considered in Friedrich and Kružík (SIAM J Math Anal 50:4426–4456, 2018) where the viscosity stress tensor complies with the principle of time-continuous frame-indifference. Combining the derivation of nonlinear plate theory by Friesecke, James and Müller (Commun Pure Appl Math 55:1461–1506, 2002; Arch Ration Mech Anal 180:183–236, 2006), and the abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004), we perform a dimension-reduction from three dimensions to two dimensions and identify weak solutions of viscoelastic form of von Kármán plates.
Similar content being viewed by others
References
Abels, H., Mora, M.G., Müller, S.: The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity. Calc. Var. PDE41, 241–259, 2011
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam 2003
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures Math. ETH Zürich. Birkhäuser, Basel 2005
Antman, S.S.: Physically unacceptable viscous stresses. Z. Angew. Math. Phys. 49, 980–988, 1998
Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York 2004
Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403, 1977
Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174, 1981
Batra, R.C.: Thermodynamics of non-simple elastic materials. J. Elasticity6, 451–456, 1976
Bella, P., Kohn, R.V.: Coarsening of folds in hanging drapes. Commun. Pure Appl. Math. 70, 978–1021, 2017
Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766, 2017
Bock, I.: On Von Kármán equations for viscoelastic plates. J. Comput. Appl. Math. 63, 277–282, 1995
Bock, I., Jarušek, J.: Solvability of dynamic contact problems for elastic von Kármán plates. SIAM J. Math. Anal. 41, 37–45, 2009
Bock, I., Jarušek, J., Šilhavý, M.: On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate. Nonlinear Anal. Real World Appl. 32, 111–135, 2016
Braides, A., Colombo, M., Gobbino, M., Solci, M.: Minimizing movements along a sequence of functionals and curves of maximal slope. C. R. Math. 354, 685–689, 2016
Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56, 1985
Casarino, V., Percivale, D.: A variational model for nonlinear elastic plates. J. Convex Anal. 3, 221–243, 1996
Ciarlet, P.G.: Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam 1988
Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Birkhäuser, Boston 1993
De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68, 180–187, 1980
Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133, 1985
Föppl, A.: Vorlesungen über technische Mechanik. Leipzig5, 132–139, 1907
Friedrich, M., Kružík, M., Valdman, J.: Numerical approximation of von Kármán viscoelastic plates. Disc. Cont. Dynam. Syst.-S https://doi.org/10.3934/dcdss.2020322
Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506, 2002
Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-Convergence. Arch. Ration. Mech. Anal. 180, 183–236, 2006
Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Control Optim. Calc. Var. 15, 863–871, 2009
Krömer, S., Roubíček, T.: Quasistatic viscoelasticity with self-contact at large strains. J. Elasticity (to appear).
Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Cham 2019
Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193, 255–310, 2009
Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578, 1995
Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84, 1996
Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Monge-Ampére constraint matching: of isometries, density and regularity and elastic theories of shallow shells. Ann. IHP (C) Nonlinear Anal. 34, 45–67, 2017
Maddalena, F., Percivale, D., Tomarelli, F.: Variational problems for Föppl-von Kármán plates. SIAM J. Math. Anal. 50, 251–282, 2018
Mielke, A., Ortner, C., Şengül, Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Anal. 46, 1317–1347, 2014
Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods Appl. Sci. 26, 2203–2236, 2016
Mielke, A., textscRoubíček, T.: Thermoviscoelasticity in Kelvin-Voigt rheology at large strains. Arch. Ration. Mech. Anal. https://doi.org/10.1007/s00205-020-01537-z. Preprint at arXiv:1903.11094
Ortner, C.: Two Variational Techniques for the Approximation of Curves of Maximal Slope. Technical report NA05/10. Oxford University Computing Laboratory, Oxford 2005
Pantz, O.: On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167, 179–209, 2003
Park, J.Y., Kang, J.R.: Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory. Acta Appl. Math. 110, 1461–1474, 2010
Podio-Guidugli, P.: Contact interactions, stress, and material symmetry for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276, 2002
Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57, 1627–1672, 2004
Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. Ser. A31, 1427–1451, 2011
Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414, 1962
Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112, 1964
von Kármán, T.: Festigkeitsprobleme im Maschinenbau in Encyclopädie der Mathematischen Wissenschaften. vol. IV/4, Leipzig, 311–385, 1910.
Acknowledgements
This work was funded by the DFG Project FR 4083/1-1 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 -390685587, Mathematics Münster: Dynamics–Geometry–Structure. M.F. acknowledges support by the Alexander von Humboldt Stiftung and thanks for the warm hospitality at ÚTIA AVČR, where this project has been initiated. M.K. acknowledges support by the GAČR project 17-04301S and GAČR-FWF project 19-29646L.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by I. Fonseca
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Friedrich, M., Kružík, M. Derivation of von Kármán Plate Theory in the Framework of Three-Dimensional Viscoelasticity. Arch Rational Mech Anal 238, 489–540 (2020). https://doi.org/10.1007/s00205-020-01547-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-020-01547-x