Skip to main content
Log in

Energy and Large Time Estimates for Nonlinear Porous Medium Flow with Nonlocal Pressure in \(\mathbb {R}^N\)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the general family of nonlinear evolution equations of fractional diffusive type \(\partial _t u-\text{ div }\left( |u|^{m_1}\nabla (-\Delta )^{-s} [ |u|^{m_2-1}u]\right) =f\). Such nonlocal equations are related to the porous medium equations with a fractional Laplacian pressure. Our study concerns the case in which the flow takes place in the whole space. We consider \(m_1, m_2>0\), and \(s\in (0,1)\), and prove the existence of weak solutions. Moreover, when \(f\equiv 0\) we obtain the \(L^p\)-\(L^\infty \) decay estimates of solutions, for \(p\geqq 1\). In addition, we also investigate the finite time extinction of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S., Díaz, J.I., Shmarev, S.: Energy Methods for Free Boundary Problems. Applications to nonlinear PDEs and Fluid Mechanics. Series Progress in Nonlinear Differential Equations and Their Applications, No. 48. Birkhäuser, Boston 2002

    MATH  Google Scholar 

  2. Bénilan, Ph, Crandall, M.G.: The continuous dependence on \(\varphi \) of solutions of \(u_t-\Delta \varphi (u) = 0 \). Indiana Univ. Math. J. 30, 161–177, 1981

    Article  MathSciNet  Google Scholar 

  3. Biler, P., Imbert, C., Karch, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529, 2015

    Article  MathSciNet  Google Scholar 

  4. Bonforte, M., Figalli, A., Ros-Otón, X.: Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508, 2017

    Article  MathSciNet  Google Scholar 

  5. Bonforte, M., Figalli, A., Vázquez, J.L.: Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE11, 945–982, 2018

    Article  MathSciNet  Google Scholar 

  6. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35(12), 5725–5767, 2015

    Article  MathSciNet  Google Scholar 

  7. Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284, 2014

    Article  MathSciNet  Google Scholar 

  8. Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362, 2015

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDEs32, 1245–1260, 2007

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Soria, F., Vázquez, J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, 1701–1746, 2013

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Vázquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565, 2011

    Article  MathSciNet  Google Scholar 

  12. Caffarelli, L.A., Vázquez, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A. 29, 1393–1404, 2011

    Article  MathSciNet  Google Scholar 

  13. Caffarelli, L., Stinga, P.R.: Fractional elliptic equations: Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire33, 767–807, 2016

    Article  MathSciNet  Google Scholar 

  14. Constantin, P., Ignatova, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. Int. Math. Res. Not. 6, 1–21, 2016

    Google Scholar 

  15. Dao, N.A., Díaz, J.I., Kha, H.V.: Complete quenching phenomenon and instantaneous shrinking of support of solutions of degenerate parabolic equations with nonlinear singular absorption. Proc. R. Soc. Edinb. 149, 1323–1346, 2019

    Article  MathSciNet  Google Scholar 

  16. Davies, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333, 1987

    Article  MathSciNet  Google Scholar 

  17. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409, 2011

    Article  MathSciNet  Google Scholar 

  18. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284, 2012

    Article  MathSciNet  Google Scholar 

  19. Díaz, J.I., Gómez-Castro, D., Vázquez, J.L.: The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Anal. 177, 325–360, 2018

    Article  MathSciNet  Google Scholar 

  20. Dolbeault, J., Zhang, A.: Flows and functional inequalities for fractional operators. Appl. Anal. 96(9), 1547–1560, 2017

    Article  MathSciNet  Google Scholar 

  21. Nguyen, Q.-H., Vázquez, J.L.: Porous medium equation with nonlocal pressure in a bounded domain. Commun. PDEs43, 1502–1539, 2018

    Article  MathSciNet  Google Scholar 

  22. Porretta, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica pura ed applicata. (IV)CLXXVII, 143–172, 1999

    Article  MathSciNet  Google Scholar 

  23. Rakotoson, J.M., Temam, R.: An optimal compactness theorem and application to elliptic–parabolic systems. Appl. Math. Lett. 14, 303–306, 2001

    Article  MathSciNet  Google Scholar 

  24. Serfaty, S., Vázquez, J.L.: A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. PDEs49, 1091–1120, 2014

    Article  MathSciNet  Google Scholar 

  25. Simon, J.: Compact sets in the space \( L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96, 1987

    Article  MathSciNet  Google Scholar 

  26. Stan, D., del Teso, F., Vázquez, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260, 1154–1199, 2016

    Article  Google Scholar 

  27. Stan, D., del Teso, F., Vázquez, J.L.: Existence of weak solutions for porous medium equations with nonlocal pressure. Arch. Ration. Mech. Anal. 233(1), 451–496, 2019

    Article  MathSciNet  Google Scholar 

  28. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton 1970

    MATH  Google Scholar 

  29. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack inequality for some fractional operators. Commun. PDE35, 2092–2122, 2010

    Article  MathSciNet  Google Scholar 

  30. Taylor, M.E.: Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii, p. 715. Applied Mathematical Sciences 117. Springer, New York (2011)

  31. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory Oxford Mathematical Monographs. Oxford University Press, Oxford 2007

    Google Scholar 

  32. Vázquez, J.L., de Pablo, A., Quirós, F., Rodríguez, A.: Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19, 1949–1975, 2017

    Article  MathSciNet  Google Scholar 

  33. Zhang, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182, 416–430, 2002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Vietnam Institute of Advanced Study in Mathematics (VIASM) for their warm hospitality during his visiting time. The research of Jesus Ildefonso Díaz was partially supported by Project MTM2017-85449-P of the Spanish Ministerio de Ciencia e Innovación and as a member of the Research Group MOMAT (Ref. 910480) of the UCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Ildefonso Díaz.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 10

Let \(s\in (0,1)\). For any \(\varepsilon >0\), we have

$$\begin{aligned} 0\leqq \mathcal {F} \left\{ \mathcal {L}^s_\varepsilon \right\} \leqq \mathcal {F} \left\{ (-\Delta )^s \right\} . \end{aligned}$$

Proof

It is known that for any \(u\in \mathcal {S}(\mathbb {R}^N)\) (the Schwartz space), \(\mathcal {F} \{(-\Delta )^s\}\) can be considered as a multiplier of \(\mathcal {F} \{(-\Delta )^s u \}\), that is,

$$\begin{aligned} \mathcal {F}\left\{ (-\Delta )^s u \right\} (\xi ) = \mathcal {F} \{(-\Delta )^s\} \mathcal {F}\{u\} (\xi ). \end{aligned}$$

We have

$$\begin{aligned} (-\Delta )^s u(x) = \frac{1}{2} \int _{\mathbb {R}^N} \frac{u(x+h)+ u(x-h) -2 u(x) }{|h|^{N+2s}} \hbox {d}h. \end{aligned}$$

Taking the Fourier transform yields

$$\begin{aligned} \mathcal {F} \left\{ (-\Delta )^s u \right\} (\xi )&= \frac{1}{2} \int _{\mathbb {R}^N} \frac{e^{i\xi \cdot h}+ e^{-i\xi \cdot h} -2}{|h|^{N+2s}} \hbox {d}h \, \mathcal {F}\{u\}(\xi ) \\&= \int _{\mathbb {R}^N} \frac{1-\cos (\xi \cdot h)}{|h|^{N+2s}} \hbox {d}h \, \mathcal {F}\{u\} (\xi ) . \end{aligned}$$

This implies that

$$\begin{aligned} \mathcal {F} \left\{ (-\Delta )^s \right\} (\xi ) = \int _{\mathbb {R}^N} \frac{1-\cos (\xi \cdot h)}{|h|^{N+2s}} \hbox {d}h . \end{aligned}$$
(5.1)

Similarly, we also have

$$\begin{aligned} \mathcal {F} \left\{ \mathcal {L}^s_\varepsilon u \right\} (\xi )&= \frac{1}{2} \int _{\mathbb {R}^N} \frac{e^{i\xi \cdot h}+ e^{-i\xi \cdot h} -2}{(|h|^2 + \varepsilon ^2)^{\frac{N+2s}{2}}} \hbox {d}h \, \mathcal {F}\{u\}(\xi ) \\&= \int _{\mathbb {R}^N} \frac{1-\cos (\xi \cdot h)}{(|h|^2 + \varepsilon ^2)^{\frac{N+2s}{2}}} \hbox {d}h \, \mathcal {F}\{u\} (\xi ) . \end{aligned}$$

Therefore,

$$\begin{aligned} \mathcal {F} \left\{ \mathcal {L}^s_\varepsilon \right\} (\xi ) = \int _{\mathbb {R}^N} \frac{1-\cos (\xi \cdot h)}{(|h|^2 + \varepsilon ^2)^{\frac{N+2s}{2}}} \hbox {d}h . \end{aligned}$$
(5.2)

Then the conclusion of Lemma 10 follows from (5.1) and (5.2). \(\quad \square \)

Next, we have the following embedding results:

Lemma 11

Let \(\alpha \in (0,1)\), \(N\geqq 1\), and \(p\geqq 1\). Then, we have

$$\begin{aligned} \Vert \nabla ^{\alpha } v \Vert _{L^p(\mathbb {R}^N)} \leqq C \Vert \nabla v \Vert ^{\alpha }_{L^p(\mathbb {R}^N)} \Vert v\Vert _{L^p(\mathbb {R}^N)}^{1-\alpha }, \quad \forall v\in W^{1,p}(\mathbb {R}^N). \end{aligned}$$

Proof

We have

$$\begin{aligned} \Vert \nabla ^{\alpha } v \Vert _{L^p(\mathbb {R}^N)}&\leqq C(N,\alpha ) \left( \int _{\mathbb {R}^N} \left( \int _{\mathbb {R}^N} \frac{|v(x+h)- v(x)|}{|h|^{N+\alpha }} \hbox {d}h \right) ^p \hbox {d}x \right) ^{1/p} \nonumber \\&\leqq C(N,\alpha , p)\left[ \left( \int _{\mathbb {R}^N} \left( \int _{|h|\leqq \lambda } \frac{|v(x+h)- v(x)|}{|h|^{N+\alpha }} \hbox {d}h \right) ^p \hbox {d}x \right) ^{1/p} \right. \nonumber \\&\quad \left. + \left( \int _{\mathbb {R}^N} \left( \int _{|h|> \lambda } \frac{|v(x+h)- v(x)|}{|h|^{N+\alpha }} \hbox {d}h \right) ^p \hbox {d}x \right) ^{1/p} \right] := C(\mathbf {I}_1 + \mathbf {I}_2) . \end{aligned}$$
(5.3)

Now we consider \(\mathbf {I}_1\). Applying Young’s inequality and Hölder’s inequality yields

$$\begin{aligned} \mathbf {I}_1&\leqq \int _{ |h|\leqq \lambda } \left( \int _{\mathbb {R}^N} \left| \frac{|v(x+h)- v(x)|}{|h|^{N+\alpha }}\right| ^{p} \hbox {d}x \right) ^{1/p} \hbox {d}h \nonumber \\&\leqq \int _{|h|\leqq \lambda } \left( \int _{\mathbb {R}^N} \left( \int ^1_0 |\nabla v( t(x+h)+(1-t)x )| \hbox {d}t \right) ^{p} \hbox {d}x \right) ^{1/p} |h|^{-(N+\alpha -1)} \hbox {d}h \nonumber \\&\leqq \int _{|h|\leqq \lambda } \left( \int ^1_0 \int _{\mathbb {R}^N} |\nabla v( t(x+h)+(1-t)x )|^p \hbox {d}x\hbox {d}t \right) ^{1/p} |h|^{-(N+\alpha -1)} \hbox {d}h \nonumber \\&\leqq C(N, \alpha ) \lambda ^{1-\alpha } \Vert \nabla v\Vert _{L^p(\mathbb {R}^N)} . \end{aligned}$$
(5.4)

Next, we apply Young’s inequality to get

$$\begin{aligned} \mathbf {I}_2&\leqq \int _{|h|> \lambda } \left( \int _{\mathbb {R}^N} |v(x+h)- v(x)|^p \hbox {d}x \right) ^{1/p} |h|^{-(N+\alpha )} \hbox {d}h \nonumber \\&\leqq 2 \Vert v\Vert _{L^p(\mathbb {R}^N)} \int _{|h|> \lambda }|h|^{-(N+\alpha )} \hbox {d}h= C(N,\alpha ) \lambda ^{-\alpha } \Vert v\Vert _{L^p(\mathbb {R}^N)} . \end{aligned}$$
(5.5)

A combination of (5.4) and (5.5) implies

$$\begin{aligned} \mathbf {I}_1 + \mathbf {I}_2 \leqq C(N,\alpha ) \left( \lambda ^{1-\alpha } \Vert \nabla v\Vert _{L^p(\mathbb {R}^N)} + \lambda ^{-\alpha } \Vert v\Vert _{L^p(\mathbb {R}^N)} \right) . \end{aligned}$$

The last inequality holds for any \(\lambda >0\), so we obtain

$$\begin{aligned} \mathbf {I}_1 + \mathbf {I}_2 \leqq C(N,\alpha ) \Vert v\Vert ^{1-\alpha }_{L^p(\mathbb {R}^N)} \Vert \nabla v\Vert ^\alpha _{ L^p(\mathbb {R}^N)} . \end{aligned}$$
(5.6)

By (5.3) and (5.6), we complete the proof of Lemma 11. \(\quad \square \)

Lemma 12

Let \(\theta \in (0,1)\), and \(N\geqq 1\). Let \( \alpha _1, \alpha _2 \in (0,1)\) be such that \(\alpha _1 < \alpha _2\theta \). Assume that \(\Gamma \) is a \(\theta \)-Hölder continuous function on \(\mathbb {R }\). Then we have

$$\begin{aligned} \Vert \nabla ^{\alpha _1} \Gamma (v) \Vert _{L^r(\mathbb {R}^N)} \leqq C \Vert v\Vert _{\dot{H} ^{\alpha _2}(\mathbb {R}^N)} , \end{aligned}$$

where

$$\begin{aligned} \frac{\alpha _1}{\theta } + \frac{N}{2} = \alpha _2 + \frac{N}{r} . \end{aligned}$$
(5.7)

Remark 11

Note that it follows from (5.7) that \(r>2\).

Proof

The proof of Lemma 12 can be found in [3, Lemma 6.6] . \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, N.A., Díaz, J.I. Energy and Large Time Estimates for Nonlinear Porous Medium Flow with Nonlocal Pressure in \(\mathbb {R}^N\). Arch Rational Mech Anal 238, 299–345 (2020). https://doi.org/10.1007/s00205-020-01543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01543-1

Navigation