Skip to main content
Log in

Shape Derivative of the Dirichlet Energy for a Transmission Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For a transmission problem in a truncated two-dimensional cylinder located beneath the graph of a function u, the shape derivative of the Dirichlet energy (with respect to u) is shown to be well-defined and is computed in terms of u. The main difficulties in this context arise from the weak regularity of the domain and the possibly non-empty intersection of the graph of u and the transmission interface. The explicit formula for the shape derivative is then used to identify the partial differential equation solved by the minimizers of an energy functional arising in the modeling of micromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acosta, G., Armentano, M.G., Durán, R.G., Lombardi, A.L.: Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp. J. Math. Anal. Appl. 310, 397–411, 2005

    Article  MathSciNet  Google Scholar 

  2. Amann, H., Escher, J.: Analysis. Birkhäuser Verlag, Basel 2009

    MATH  Google Scholar 

  3. Ambati, V.R., Asheim, A., van den Berg, J.B., van Gennip, Y., Gerasimov, T., Hlod, A., Planqué, B., van der Schans, M., van der Stelt, S., Vargas Rivera, M., Vondenhoff, E.: Some studies on the deformation of the membrane in an RF MEMS switch, in Proceedings of the 63rd European Study Group Mathematics with Industry, (Eds. Bokhove, O., Hurink, J., Meinsma, G., Stolk, C. and Vellekoop, M.) CWI Syllabus, Netherlands, 1 (2008), Centrum voor Wiskunde en Informatica 65–84. http://eprints.ewi.utwente.nl/14950.

  4. Bernstein D.H., Guidotti P.: Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators, in Proceedings of Modeling and Simulation of Microsystems 2001, Hilton Head Island, SC, 2001, 306–309.

  5. Che, J., Dzubiella, J., Li, B., McCammon, J.A.: Electrostatic free energy and its variations in implicit solvent models. J. Phys. Chem. B112, 3058–3069, 2008

    Article  Google Scholar 

  6. Cheng, L.-T., Li, B., White, M., Zhou, S.: Motion of a cylindrical dielectric boundary. SIAM J. Appl. Math. 73, 594–616, 2013

    Article  MathSciNet  Google Scholar 

  7. Dal Maso, G.: An introduction to \(\Gamma \)-convergence, vol. 8. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA, 1993

  8. Escher, J., Gosselet, P., Lienstromberg, C.: A note on model reduction for microelectromechanical systems. Nonlinearity30, 454–465, 2017

    Article  ADS  MathSciNet  Google Scholar 

  9. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \(L^p\)spaces. Springer Monographs in Mathematics, Springer, New York, 2007

  10. Fosco, C., Lombardo, F.C., Mazzitelli, F.D.: An improved proximity force approximation for electrostatics. Ann. Phys. 327, 2050–2059, 2012

    Article  ADS  Google Scholar 

  11. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 69 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Reprint of the 1985 original. (2011)

  12. Henrot, A., Pierre, M.: Shape variation and optimization, vol. 28 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, (2018)

  13. Laurençot, Ph., Walker, Ch.: A free boundary problem modeling electrostatic MEMS: I. Linear bending effects. Math. Ann. 360, 307–349, 2014

  14. Laurençot, Ph., Walker, Ch.: A variational approach to a stationary free boundary problem modeling MEMS. ESAIM Control Optim. Calc. Var. 22, 417–438, 2016

  15. Laurençot, Ph., Walker, Ch.: A constrained model for MEMS with varying dielectric properties. J. Elliptic Parabol. Equ. 3, 15–51, 2017

  16. Laurençot, Ph., Walker, Ch.: Some singular equations modeling MEMS. Bull. Am. Math. Soc. (N.S.)54, 437–479, 2017

  17. Laurençot, Ph., Walker, Ch.: Heterogeneous dielectric properties in models for microelectromechanical systems. SIAM J. Appl. Math. 78, 504–530, 2018

  18. Lemrabet, K.: Régularité de la solution d’un problème de transmission. J. Math. Pures Appl. 9(56), 1–38, 1977

    MathSciNet  MATH  Google Scholar 

  19. Maz’ya, V.G., Netrusov, Y.V., Poborchiĭ, S.V.: Boundary values of functions from Sobolev spaces in some non-Lipschitzian domains. St. Petersburg Math. J. 11, 107–128, 2000

    MathSciNet  Google Scholar 

  20. Pelesko J.A.: Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM J. Appl. Math. 62, 888–908, 2001/02

  21. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton, FL 2003

    MATH  Google Scholar 

  22. Sokołowski, J., Zolésio, J.-P.: Introduction to shape optimization, vol. 16. Springer Series in Computational Mathematics. Springer-Verlag, Berlin 1992

  23. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, vol. 68. Applied Mathematical Sciences. Springer-Verlag, New York 1988

  24. Šverák, V.: On optimal shape design. J. Math. Pures Appl. 9(72), 537–551, 1993

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Laurençot.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the CNRS Projet International de Coopération Scientifique PICS07710.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurençot, P., Walker, C. Shape Derivative of the Dirichlet Energy for a Transmission Problem. Arch Rational Mech Anal 237, 447–496 (2020). https://doi.org/10.1007/s00205-020-01512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01512-8

Navigation